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The continuous Multiscale Entanglement Renormalization Ansatz pro-

vides a variational ansatz for the ground state of a quantum field theory.

Not only that, it provides a UV regularization scheme, since cMERA

states come equipped with an intrinsic UV cutoff. We review this con-

struction for one-dimensional free CFTs, and characterize the correla-

tions and the entanglement entropy profile of the cMERA corresponding

to the ground state of a 1+1 Dirac free fermion theory. Our results reveal

how the UV regularization is reflected in the entanglement structure of

the cMERA, and leave the door open for further applications.

1 Introduction

Not in few occasions progress in physics is achieved when techniques and insights

from a particular area are applied to tackle problems in another one which at first

might seem independent. The present essay addresses recent advances in the useful

interplay between quantum field theory, on one side, and quantum information and

quantum many-body theory on the other, in the framework of continuous tensor

networks.

Quantum field theory is one of the most succesful human attempts to describe nature

at a microscopic level. It is a common tool in fields ranging from fundamental particle

theory to condensed matter physics. It presents, nevertheless, several limitations

that often lead to ill-defined concepts and cause confusion. One of the issues present

in many quantum field theories is the need for UV regularization of the theory1,

i.e. the inclusion of some form of cutoff that prevents modes of arbitrarily high

energy from affecting the predictions for observables of the theory, hence avoiding

likely divergences in these. These modes are considered to be outside the scope of

our theory, in the philosophy of effective field theories and renormalization. One

of the simplest methods to carry out this regularization is the discretization of the

1Most commonly known among students as “sweeping the theory’s infinities under the rug”.
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2 Chasing a cMERA

spatial support of the theory, that is to say, placing the theory in a lattice of finite

lattice spacing a. This lattice spacing provides a UV cutoff that prevents high

energy modes from kicking in. For example, in a free theory like the ones we will

consider in the main part of this essay, high energy modes directly correspond to

high momentum modes, but momenta higher that
2π

a
are forbidden in our lattice

approach. Even though effective, placing a quantum field theory on the lattice turns

out to be somewhat drastic in other aspects. Another common feature of the theories

we are going to consider is that they are conformal field theories (CFTs). These

are quantum field theories whose symmetries include the full conformal group of

the space they are defined in, and they are particularly useful to represent critical

systems at continuous phase transitions, due to their conformal symmetry removing

any dependence on a physical scale. Placing a CFT on a lattice suddenly removes the

rich spectrum of symmetries of the theory, reducing, for instance, full translational

and rotational symmetries to scarce discrete subgroups of them.

Quantum entanglement, on the other hand, is a concept that seems to be playing

a very fundamental role in current and possibly future theoretical physics. It is

usually described, somewhat imprecisely, as the property of quantum mechanics

that full knowledge of the state of a system does not imply full knowledge of the

state of its subsystems. Entanglement is a many-faced phenomenon that has been

devoted attention as a possible guideline to distinguish classical from quantum, in

quantum foundations; as the source of emergent spacetime, in quantum gravity;

and less speculatively, as a useful tool for the characterization of many body states

in quantum many-body theory and condensed matter theory, and as a resource to

improve our information treatment properties, in quantum information theory. For

us, entanglement will constitute an important characteristic of the quantum states

we will be dealing with, and we will appreciate it in the context of entanglement

renormalization.

A useful concept to study these areas of physics is that of scale transformations

and renormalization group flows. Indeed, scale transformations play an impor-

tant role in the Wilsonian renormalization scheme for quantum field theories, and

also in Kadanoff’s block spin renormalization approach to many body spin systems

on a lattice. Even though a rigorous definition of a scale transformation is something

that still has not been agreed upon, everyone has an intuitive idea of what scaling

a system is, even if only based on the zooming and finite resolution properties of

optical devices, our eyes among them. Standard renormalization procedures on a

lattice involve its coarse-graining into an effective smaller set of degrees of freedom

that represent the system after zooming out. The concept of entanglement renor-

malization is based on the idea that näıve coarse-graining schemes fail to address

the entanglement present at the length scales that are removed in the scale trans-

formations, leading to its accumulation in the coarse-grained versions of the system

and thus to an improper RG flow. Its proposal is that a consistent implementation
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of RG scale transformations must deal with the entanglement properties of the sys-

tem, making sure that short-range entanglement is removed upon coarse-graining.

Conversely, we can flow in the opposite direction and reintroduce entanglement at

shorter and shorter length scales. This very simple idea led to a series of useful

insights, including the Multiscale Entanglement Renormalization Ansatz (MERA),

which has been the object of intensive research over the last ten years. Much less

well-known is its continuous, field theoretical counterpart (cMERA), which is the

object of study of this essay.

Guide for the reader

Now we have all the pieces of the puzzle for us to fit them together and give the

starting point for the essay. We will begin by reviewing the MERA, what it repre-

sents and what it is useful for. Next, we will talk about cMERA and its relation

to MERA, and we will review the cMERA structures for one dimensional bosonic

and fermionic CFTs. Once this background has been introduced, we will present

our results: we will analyze the correlations in a cMERA state for a 1+1 Dirac free

fermion theory and we will study and give expressions for the scaling of entanglement

entropy in such a state. This provides a check for the cMERA formalism in a well-

understood environment like that of a free CFT. Success in this goal may however

lead to important advances in obtaining a sound and satisfactorily well-defined con-

tinuous tensor network approach to non-interacting and interacting quantum field

theories alike. But every long journey begins with a first step, so let’s begin!

2 MERA and cMERA

As we have mentioned in the introduction, cMERA arises as a generalization to the

continuum of the MERA tensor network, so let us first see how this is done and why

we should care about it.

2.1 MERA

Tensor networks were introduced in the context of many-body quantum theory to

provide us with computationally tractable approximations to ground states of local

hamiltonians. In general, the state of a system with N degrees of freedom, for

example qudits (d-level quantum systems), will be determined by the exponentially

growing amount of dN complex coefficients2, which we arrange in a multi-indexed

array called a tensor. Tensor networks are particular ways of decomposing this

2One less than that if we want to be extremely precise and take into account the normalization
and global phase freedom.
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huge tensor into contractions of smaller tensors such that the number of parameters

involved in the description is considerably reduced. This is usually represented

graphically in diagrams like the one of figure 1, where the indices of a tensor are

drawn as “legs” coming out of its body, which can be joined (contracted) with those

of other tensors. From this point of view, a tensor network is useful if it allows for

an efficient representation of such ground states and it mimics their properties, e.g.,

the behaviour of correlations and entanglement in the system, allowing as well for

an efficient determination of expectation values of local insertions of observables of

the theory.

But the interest in tensor networks does not solely arise from its computational ad-

vantages as a variational class. They have proved themselves useful in analyzing the

entanglement structure of quantum states, as well as in the study of quantum phase

transitions and more recently, in the particular case of MERA, in the holographic

approach to quantum gravity given by the AdS/CFT correspondence, as we mention

below.

To begin with, a MERA that prepares a state on a 1-dimensional lattice is a 2-

dimensional tensor network as the one shown in figure 1 [1, 2]. Its horizontal di-

mension represents the spatial dimension of the system, while its vertical dimension

is associated to scale. Generalizations of the same scheme to higher dimensional

systems are straightforward. As a variational class it is particularly appropiate to

describe critical phenomena, for it displays power-law decaying correlations and log-

arithmic scaling of entanglement entropies. Indeed, it has been shown that MERA

allows for the extraction of conformal data of an underlying CFT directly from the

lattice. When all the tensors in the MERA are equal regardless of which level the

are in, we say the MERA is scale invariant.

MERA can be interpreted in different ways, but the one that will be most relevant

for us consists of regarding it as a quantum circuit which, starting from a product

state, generates the final approximation to the ground state via a series of two-

qubit unitary gates (figure 2). In order to better understand this picture, let us

first learn about the integrants of MERA. A MERA is composed of two kinds of

tensors: unitaries (usually called disentanglers) and isometries. The disentanglers

implement a unitary transformation between the Hilbert space associated to their

two upper legs and the one associated to the lower ones. The isometries implement,

of course, an isometric map between the Hilbert space associated to their only upper

leg and the necessarily bigger space associated to the lower ones. Start from the

top of the MERA, and consider the following two step process: from one layer to

the next, the action of the isometries introduces new degrees of freedom in the

system, interspersed with the pre-existing ones. In fact, we can see the isometries

as two-site to two-site unitaries, like the disentanglers, one of whose inputs was

originally in some ancillary product state |0〉 with the rest of the system. After
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Figure 1: A MERA tensor network. Isometries are shown as green triangles, and disen-

tanglers as violet squares.

the isometries, the disentanglers3 entangle the newly introduced degrees of freedom

with the previously existing ones. This generation of short range entanglement can

be interpreted as resulting from the action, during a short period of time, of some

local interaction Hamiltonian. After these two steps we find ourselves in a situation

similar to the one at the beginning of step one, and we can proceed in the same

fashion. The result: we obtain our final state through local unitary operations on

an initial product state that introduce entanglement at different scales, depending

on their vertical coordinate in the network.

We can give an alternative interpretation of MERA via a block coarse-graining pro-

cedure. In this case we start from the bottommost layer, the state on the lattice, and

divide it into two site blocks. Now we begin to move upwards for the RG flow. The

application of the first layer of disentanglers removes the short range entanglement

between neighbouring sites of the lattice that belong to different blocks. This is of

the utmost importance for the next step, where isometries map states in a two-site

Hilbert space to a one-site Hilbert space in the layer above, effectively removing part

of the information of the previous layer and thus realizing the coarse-graining oper-

ation. This can be understood as a rescaling transformation in which correlations

3In this picture we should call them indeed entanglers. The reason for this now confusing
nomenclature stems from the entanglement renormalization picture of the MERA, which we will
address soon.
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|0〉 |0〉 |0〉 |0〉 |0〉|0〉|0〉|0〉 |0〉|0〉|0〉|0〉|0〉|0〉|0〉 |0〉|0〉
|0〉|0〉

|ψ〉

x

u
(scale)

Figure 2: MERA as a quantum circuit.

at shorter range than a certain scale are removed, hence the name entanglement

renormalization.

Hence MERA provides a computationally tractable ansatz for the ground state of

a (lattice regularized) CFT; it brings insight about its entanglement structure, via

its quantum circuit picture, and it implements an entanglement renormalization RG

flow on the lattice. These are enough reasons to be willing to find a continuous

version of it even without counting that, excitingly enough, it also realizes the holo-

graphic principle. The extra dimension in AdS/CFT and the vertical dimension in

MERA both have a meaning of scale. In fact, MERA has been proposed, first, as a

discretization of AdS, and later of its space of geodesics, to which it maps under an

X-ray transform. This is currently a very active area of research [3, 4, 5, 6].

2.2 cMERA

The continuous MERA or cMERA provides a representation for the ground state

of a quantum field theory inspired in the philosophy of MERA in the lattice. This

construction was introduced in [7], and its analogy with the discrete case can be

better understood via the quantum circuit picture of MERA described in the previ-

ous section, where we started from a product state and applied a series of unitaries

which progressively introduce entanglement at different scales. cMERA generalizes

this same idea by making the two dimensions of the MERA continuous:
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• First, we replace the discrete entangling steps by a unitary dependent of a

continuous scale parameter u ∈ R (continuous version of the vertical dimension

of the MERA).

• Second, we replace our finite lattice quantum system by a quantum field theory

(continuous version of the horizontal dimension of the MERA). As it happened

on the lattice, we expect our cMERA to represent the ground state of a CFT,

which will in turn represent a critical state of a continuous phase transition.

Note that, these two modifications being independent, we can afford to take one and

not the other. In particular, considering a continuous scale parameter in a discrete

lattice system provides us with the lattice cMERA, which is itself an interesting

construction. We are not going to deal with it directly, but it will appear naturally

in practical numerical implementations of the cMERA.

Just as its discrete counterpart, cMERA will start from a product state |Ω〉, with

no entanglement between its constituents, and will generate a new state through an

entangling unitary evolution in scale U(u1, u2) defined as

U(u1, u2) = P exp

(
−i
∫ u2

u1

du (K(u) + L)

)
u2 ≥ u1 (1)

where P denotes the scale path ordering of the integral. The generator of this

evolution is composed itself of two operators: L and K(u). Both are local functions

of the fields of the theory. The first one, L is the responsible of the rescaling of

space, and of the operators. It generates transformations of the form:

x 7−→ λx O 7−→ λdO (2)

The second part of the scale transformation generator is K(u), known as the entan-

gler. Its role in the cMERA paradigm is analogous to the role of the (dis)entanglers

of MERA: it introduces short range entanglement during the scale evolution, and so

to say compensates for the effect of L, which increases the range of the preexisting

correlations. Just as in a scale invariant MERA all the tensors are equal regardless

of the level at which they are placed, for a conformally invariant (and hence scale

independent) CFT, we will demand K to be independent of u. Note that this saves

us the inclusion of the path ordering in the definition of U above. To build a cMERA

state, we depart from the uncorrelated product state |Ω〉 and start introducing en-

tanglement from the IR scale limit u = −∞ to some finite u0. Note that since there

exists reparametrization freedom of the scale parameter u, we can fix our convention

by choosing u0 = 0 and define our cMERA as

|ψ(u)〉 = U(u,−∞) |Ω〉 =⇒ |ψ 〉cMERA = |ψ(0)〉 = U(0,−∞) |Ω〉 ≡ |ψ 〉 (3)

Note that there is, up to what we have seen, a slight difference between cMERA and
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|Ω〉

|ψ〉

e−i
∫
du (K(u)+L)

x

u
(scale)

Figure 3: Scale evolution that originates the cMERA (to be compared with figure 2).

MERA, and that is that the mapping between the system at two distinct scales u1, u2

is a unitary transformation U(u2, u1) while on the lattice it was a mere isometry.

At this point it is a matter of current investigation whether this will suppose a

problem in the applications of cMERA, and truncation schemes involving a smearing

of the fields of the theory that return the isometric character to cMERA are being

developed as these lines are written. For the purposes of this essay it is nevertheless

safe to ignore this point and so will we do.

Stopping the evolution at a finite scale naturally introduces an energy scale cutoff

in |ψ 〉. Only when probing it at momenta smaller than the one corresponding to

u0 = 0, which we denote by Λ, the state we have built will look like the ground

state of the target CFT. When examined at momenta larger than Λ (or equivalently

distances shorter than 1/Λ), we will hopefully find that no entanglement has been

introduced at those scales, and the state still looks similar to a product state. Only

if we continue the scale evolution until u = ∞, we would have introduced entan-

glement at all scales, and the result should be the ground state |0〉 of the target

Hamiltonian, the one that characterizes our theory of interest. Thus cMERA man-

ages to “interpolate” between the state |0〉 at long length scales and the state |Ω〉 at
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short length scales4. This apparently simple statement contains the true essence of

what the cMERA formalism accomplishes: namely a UV-regularization procedure

for quantum field theories which preserves their continuous character more succes-

fully than discretization to a lattice. As a matter of fact, cMERA has been seen to

realize full conformal invariance on the cMERA [8], but it might require, neverthe-

less, the redefinition of what we mean, by, for example, a scale transformation. As

we will see, the cMERA state will turn out to be invariant under scale transforma-

tions, provided that we take them to be generated by K + L (rather than L, which

would be the generator for the “näıve” scale transformation):

|ψ(u)〉 = e−iu(K+L) |ψ(0)〉 = |ψ(0)〉 (4)

Let’s now see how we build the cMERA formalism ( |0〉 , |Ω〉 , |ψ 〉 , L and K) in two

particular, simple CFTs.

2.3 A first example: 1+1 free bosons

Let us begin with a concise reminder of what this massless, Klein-Gordon theory

is about. Consider a single scalar field φ(x) in one dimension and its conjugate

momentum π(x), with whom it satisfies canonical commutation relations

[φ(x), π(y)] = iδ(x− y) (5)

Let also the Fourier transformed operators be

φ(k) =
1√
2π

∫ ∞

−∞
dx e−ikxφ(x)dx π(k) =

1√
2π

∫ ∞

−∞
dx e−ikxπ(x)dx (6)

φ(k)† = φ(−k) π(k)† = π(−k) [φ(k), π(q)] = iδ(k + q) (7)

Then we can express the Hamiltonian of the theory as follows:

H =
1

2

∫ ∞

−∞
dx(π(x)2 + (∂φ(x))2) =

∫ ∞

−∞
dk(π(k)π(−k) + k2φ(k)φ(−k)) (8)

Now we can proceed to diagonalize this Hamiltonian in the usual way, by defining

creation and annihilation operators a(k), a†(k):

a(k) =

√
|k|
2
φ(k) + i

√
1

2|k|π(k) a†(k) =

√
|k|
2
φ(−k)− i

√
1

2|k|π(−k) (9)

4On a less serious note here, the spelling and pronunciation of cMERA remind us of the Greek
mythological monster Chimera (χιµαιρα), which amusingly enough also consisted of an “interpo-
lation” of, in this case, a lion, a goat and a snake (hopefully more ferocious beasts to tame than
our product and entangled states).
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[a(k), a†(q)] = δ(k + q) (10)

in terms of which the Hamiltonian can be expressed as

H =

∫ ∞

−∞
dk |k|a†(k)a(k) (11)

The ground state of the system will be the one annihilated by all the annihilation

operators:

a(k) |0〉 = 0 ∀k ∈ R (12)

This state |0〉 contains, as is well known, entanglement at all length scales, and

would be the UV limit of our entangling procedure. Now it remains to define the

departure product state |Ω〉. Since it is complicated to rigorously give a tensor

product structure to the Hilbert space of a quantum field theory, which would be

useful in order to define our product state with respect to it, we proceed from the

finite dimensional case and take a continuous limit. Consider a discrete system

which associates an independent, bosonic degree of freedom (harmonic oscillator)

φn to every point in a lattice indexed by n. Since these degrees of freedom do not

interact, the Hamiltonian will be a sum of self-energy terms:

H =
1

2

∑

n

(π2
n + Λ2φ2

n) (13)

where Λ is some constant related to the frequency of the harmonic oscillator. The

continuum limit of this system will be given by the following Hamiltonian:

H =
1

2

∫
dx (π(x)2 + Λ2φ(x)2) =

1

2

∫
dk (π(k)π(−k) + Λ2φ(k)φ(−k)) (14)

This Hamiltonian, just as its discrete counterpart, is already diagonal in real space,

with creation and annihilation operators given by:

a(x) =

√
Λ

2
φ(x) + i

√
1

2Λ
π(x) a†(x) =

√
Λ

2
φ(x)− i

√
1

2Λ
π(x) (15)

in such a way that the ground state of the theory is the common kernel of the

annihilation operators. No surprise here, since this is nothing but the continuum

limit of the tensor product of vacua of individual harmonic oscillators

|0〉 =
⊗

n

|0〉n where

(√
Λ

2
φn + i

√
1

2Λ
πn

)
|0〉n = 0 (16)

which is the ground state of the lattice theory. To better compare with the ground

state we found a page ago, though, let us express the creation and annihilation
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operators in momentum space

a(k) =

√
Λ

2
φ(k) + i

√
1

2Λ
π(k) a†(k) =

√
Λ

2
φ(−k)− i

√
1

2Λ
π(−k) (17)

Compare this to equation (9). In both cases, the operators have the form

a(k) =

√
α(k)

2
φ(k) + i

√
1

2α(k)
π(k) a†(k) =

√
α(k)

2
φ(−k)− i

√
1

2α(k)
π(−k)

(18)

for a certain function α(k): a linear function α(k) = |k| for the CFT, a constant

α(k) = Λ in the case of the product state. Remembering the properties we want of

our cMERA, it seems natural to define it as the common kernel of the annihilation

operators from (18), for some α(k) which interpolates between |k| at small values

of k and a constant at large values of k, where the terms “small” and “large” are

meaningful with respect to a cutoff Λ. The simplest choice, which we will call the

sharp regularization scheme is then:

α(k) =

{
|k| |k| ≤ Λ

Λ |k| > Λ
(19)

which is represented in figure 4. The cMERA hence turns out to be the ground state

of the following Hamiltonian:

H =

∫ ∞

−∞
dk k

(
1

α(k)
π(k)π(−k) + α(k)φ(k)φ(−k)

)
(20)

This characterization of cMERA is different than the one we gave in the previous

section. Both can be shown to be equivalent by dualizing the entangling scale

evolution to the operators, and seeing that for the appropriate choice of K, the

annihilation operators of |Ω〉 (equation 17) evolve into those of cMERA (equation

18). Let us then see what are L and K in this theory. The generator of standard

scaling transformations is given by:

L = −1

2

∫ ∞

−∞
dx (π(x)x∂φ(x) + x∂φ(x)π(x) + q(ψ(x)π(x) + π(x)φ(x))) (21)

where q is a parameter that will determine the scaling dimensions of φ and π. Indeed,

we can compute the result of infinitesimally evolving these fields:

∂φ(x, u)

∂u
= −i[Lq, φ(x)] = (x∂ + q)φ(x) (22)

∂π(x, u)

∂u
= −i[Lq, φ(x)] = (x∂ + 1− q)π(x) (23)
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CFT
Product state

Sharp cMERA
Soft cMERA

α(k)

k

Product state

CFT

Λ

Λ
Λ

-Λ

k

α(k)

Sharp cMERA

Soft cMERA

π
4

−π
4

Figure 4: Qualitative drawings of α(k) for bosons (left) and fermions (right).

where we have defined φ(x, u) = e−iuLφ(x)eiuL and π(x, u) = e−iuLπ(x)eiuL. Now,

from (23) it follows

φ(x, u) = euqφ(eux) π(x, u) = eu(1−q)π(eux) (24)

For our cMERA we will chose q = 1/2 so that, under L = L1/2, φ and π have the

same scaling dimensions. For the entangler K, we follow the proposal of [7], and

set:

K =
1

2

∫ ∞

−∞
dk g(k)(φ(k)π(−k) + h.c.) (25)

where g(k) is a function that incorporates the cutoff Λ, and has the general form:

g(k) =
1

2
Γ

(
k

Λ

)
(26)

for some sufficiently fast decaying function Γ. In the case of the sharp regularization

scheme in α(k) that we exposed before, Γ takes the form:

Γ(κ) = Θ(1− |κ|) (27)

where Θ is the Heaviside function. We will soon present the reason why we say that

these choices of α(k) and g(k) are in some way compatible. But before let us note

something interesting that happens when we write Lq in momentum space:

Lq =
1

2

∫ ∞

−∞
(π(−k)k∂kφ(k) + k∂kφ(k)π(−k) + (1− q)(φ(k)π(−k) + π(−k)φ(k)))

(28)
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and compute L+K:

L+K =
1

2

∫ ∞

−∞

(
π(−k)k∂kφ(k) + k∂kφ(k)π(−k) +

(
1

2
+ g(k)

)
(φ(k)π(−k) + π(−k)φ(k))

)

(29)

That is, for |k| > Λ, g(k) = 0 and the integrand is that of L (the contribution from

K is trivial). This we will call the nonrelativistic scaling operator, since φ and π have

the same scaling dimensions, even though one is the time derivative of the other.

This clearly breaks the relativistic principle of treating time on equal grounds with

spatial coordinates. On the other hand, for |k| ≤ Λ, the integrand is that of L′ = L0,

which we will call the relativistic scaling operator, since now the scaling dimensions

of φ and π are the correct ones required by Lorentz invariance. The fact that L is

the scaling operator with respect to which the product state |Ω〉 is invariant, and

that L′ is the one with respect to which the ground state of the CFT |0〉 is invariant

adds then to the consistency of the construction, and begs as well the question: is

there a scaling operator such that |ψ 〉, our cMERA state, is invariant? The answer

is yes, and as we anticipated before this will be the very same L+K we have been

constructing. Indeed, as long as the compatibility condition

∂α(k)

∂k
=

2g(k)α(k)

k
(30)

is satisfied, it can be proved (by expanding the exponential up to the linear term):

a(k)e−i(K+L)δu |ψ 〉 = 0 (31)

hence the state obtained from |ψ 〉 by an infinitesimal scale transformation generated

by L + K belongs to the same common kernel of annihilation operators than |ψ 〉
and is therefore, up to possibly a complex phase, the same state.

At this point we have to bring our attention to a particular point that we have

ignored before: the real space structure of the entangler K. If we Fourier transform

back to real space, we get

K =
1

2

∫ ∞

−∞
dx dy [µ(x− y)φ(x)π(y) + h.c.] (32)

where

µ(x− y) =
1

2π

∫ ∞

−∞
dk g(k)eik(x−y) (33)

We observe that in real space the entangler is nonlocal. How much it is so will be

determined by the shape of µ(x), the Fourier transform of g(k). If we choose the

sharp cutoff g(k), µ(x) turns out to be a sinc function:

µ(x) =
sin(Λx)

x
= Λsinc(Λx) (34)
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which decays as a power law. It is nevertheless preferable to have the entangler decay

a least exponentially to retrieve some notion of locality. First of all, this brings an

analogy with the lattice, where the entangling operations have a characteristic length

scale, namely the lattice spacing. Additionally, it is expected to simplify things when

we move on to interacting theories where the interaction terms are local. A good

way to achieve it is to soften the cutoff to a Gaussian profile (soft regularization

scheme, see figure 4):

Γ(κ) = e−κ
2

=⇒ µ(x) =
Λ

4
√
π
e−

(Λx)2

4 (35)

The functions g(k) and α(k) end up being then

g(k) =
1

2
e−

k2

Λ2 α(k) = Expi

(
−1

2

k2

Λ2
e−γ
)

(36)

where Expi is the exponential integral function, and γ is the Euler-Mascheroni con-

stant.

2.4 A second example: 1+1 free Dirac fermions

Let’s apply the same procedure now to a fermionic theory. The Hamiltonian for a

couple of massless, spinless Dirac fermions ψ1, ψ2 is given by

H = −i
∫ ∞

−∞
dx (ψ1(x)†∂xψ2(x)− ψ2(x)†∂xψ1(x)) (37)

Through Fourier transformation it can be recast in the form

H =

∫ ∞

−∞
dk k

(
ψ1(k)†ψ2(k) + ψ2(k)†ψ1(k)

)
=

∫ ∞

−∞
dk |k|

(
ψ̃1(k)†ψ̃1(k)− ψ̃2(k)†ψ̃2(k)

)

(38)

where we have defined the rotated fermionic variables

ψ̃1(k) =
ψ1(k) + sign(k)ψ2(k)√

2
ψ̃2(k) =

−sign(k)ψ1(k) + ψ2(k)√
2

(39)

Given the last expression for the Hamiltonian it is clear that its ground state will

be given by:

ψ̃1(k) |0〉 = 0 and ψ̃2(k)† |0〉 = 0 (40)

i.e., in the ground state the modes which have positive energy are unoccupied (thus

the corresponding annihilation operator annihilates the vacuum), and those with

negative energy are occupied (thus, the corresponding creation operator annihilates

the vacuum, since we are speaking about fermions). Note that there is an ambiguity

in the case of the zero modes (corresponding in our case to k = 0). This leads to a
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degenerate ground state. Our cMERA state will look, at small momenta, like one

of these ground states, which we will chose arbitrarily in section 3, when we start

making computations with this theory, as the one given by the convention sign(0)=1.

The product state can be obtained, just as we did before, as the continuous limit of

a product state in a fermion lattice. It will be more natural for us to then consider

ψ2 as involving particles of negative energy (antiparticles), whose modes will hence

be occupied in the vacuum state |Ω〉:

ψ1(x) |Ω〉 = 0 and ψ2(x)† |Ω〉 = 0 (41)

or

ψ1(k) |Ω〉 = 0 and ψ2(k)† |Ω〉 = 0 (42)

Note that this is the ground state of the following Hamiltonian:

H =

∫ ∞

−∞
dk |k|

(
ψ1(k)†ψ1(k)− ψ2(k)†ψ2(k)

)
(43)

The key realization here is that both Hamiltonians, and hence both ground states

differ only by a rotation of the fields involved. We define our cMERA state |ψ 〉 as

follows:

(cos(α(k))ψ1(k) + sin(α(k))ψ2(k)) |ψ 〉 = 0 (44)

(− sin(α(k))ψ1(k)† + cos(α(k))ψ2(k)†) |ψ 〉 = 0 (45)

And from now on, we denote

ψ̃1(k) = cos(α(k))ψ1(k) + sin(α(k))ψ2(k) (46)

ψ̃2(k) = − sin(α(k))ψ1(k) + cos(α(k))ψ2(k) (47)

|ψ 〉 will be of course the ground state of the Hamiltonian

H =

∫ ∞

−∞
dk |k|

(
ψ̃1(k)†ψ̃1(k)− ψ̃2(k)†ψ̃2(k)

)
(48)

Note that both the vacuum state and the product state are of this form, with

α(k) = sign(k)
π

4
and α(k) = 0 respectively. Hence our first choice of α(k) for the

cMERA would be (sharp regularization scheme, see figure 4):

α(k) = Θ(Λ− |k|)sign(k)
π

4

(
1− |k|

Λ

)
(49)
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Just as before we can find a scaling operator L and an entangler K:

L =
−i
2

∫ ∞

−∞
dx

∑

α=1,2

(
ψα(x)†x∂ψα(x)− x∂ψα(x)†ψα(x)

)
= (50)

= i

∫ ∞

−∞
dk

∑

α=1,2

(
ψα(k)†k∂ψα(k) +

1

2
ψα(k)†ψα(k)

)
(51)

K = i

∫ ∞

−∞
dk g(k)[ψ1(k)†ψ2(k)− ψ2(k)†ψ1(k)] (52)

as well as a compatibility condition between α(k) and g(k) for the cMERA to be

invariant under L+K:
∂α(k)

dk
= −g(k)

k
(53)

Also as it happened for the bosons, when we use the sharp regularization scheme it

turns out that the entangler K is non local in real space. Indeed,

K = −i
∫ ∞

−∞

∫ ∞

−∞
dx dy µ(x− y)[ψ1(x)†ψ2(y)− ψ2(x)†ψ1(y)] (54)

where

µ(x− y) =

∫ ∞

−∞
dk e−ik(y−x)g(k) (55)

gives again an idea of the how non-local the entangling procedure is. For the theory

with a sharp regularization we have

Γ(κ) = Θ(1− |κ|) g(k) =
π

4

k

Λ
Γ

(
k

Λ

)
µ(x) =

iΛπ

2

Λx cos Λx− sin Λx

(Λx)2
(56)

where again µ presents a power law decay, so we might consider changing to a soft

Gaussian regularization, for which (see figure 4):

Γ(κ) =
2√
π
e−κ

2
g(k) =

π

4

k

Λ
Γ

(
k

Λ

)
α(k) =

π

4

(
1− erf

(
k

Λ

))
(57)

µ(x) =
−iΛ2π

4
xe
−

(Λx)2

4 (58)

3 Correlations and entanglement profile of a cMERA

state

After so much exposition, it is time for us to take action and start working with

our new toolset. Our aim in this section will be to characterize the entanglement

properties of a cMERA ground state. We will do this by computing and analyzing:
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i) the correlation functions (two-point functions) for the operators of the theory, and

ii) the entanglement profile of the cMERA state, i.e. the scaling of the entanglement

entropy of a region with its size. We will also take a look at the shape of the entan-

glement contours. As it was exposed above, the study of entanglement properties

has proved itself very useful in quantum many-body physics to extract information

from quantum states, and in particular we expect to gain insight about whether

cMERA achieves its goal of “interpolating” between the ground state of a CFT and

a product state, and in which way it is achieved. Along this section, we will explain

the procedures followed in full generality, and we will apply them to a particular

cMERA: the one built from the 1+1 Dirac fermion CFT presented in section 2.4.

We will work in parallel with the sharp and soft regularizations schemes, so that we

are able to compare them. Let’s start!

3.1 Correlation functions

Two-point correlators are easy to obtain for the cMERA, given its characterization

in terms of creation-annihilation operators and the (anti)-commutation algebra they

satisfy. Fortunately for us, the cMERA states we are going to care about satisfy

a particular property that makes these two-point correlators extremely important:

they are Gaussian states. A Gaussian state is, to give a short definition, one such

that Wick’s theorem (factorization of the N -point function into two-point correla-

tors) holds:

〈O1 . . .ON 〉 =
∑

pairings

〈Oi1Oi2〉 . . . 〈OiN−1OiN 〉 (59)

where the sum is taken over all possible pairings of the operators of the N -point

function we want to compute. It turns out that ground states of quadratic Hamilto-

nians are always Gaussian states, and this applies in particular to cMERA states (see

(20) and (48)). For these states, the two-point correlators acquire special relevance

since they contain enough information to completely determine the state. To work

with them easily, we arrange the correlators in the so-called correlation matrix:

M
|ψ 〉
α,β (x, y) = 〈Oα(x)Oβ(y)〉 (60)

where the Oα stand for the corresponding operators of the theory (φ and π for

bosonic theories, ψ and ψ† for fermionic ones). From now on, we will omit the

specification of with respect to which state the correlation matrix is taken, whenever

this is clear.

Particularizing to our 1-dimensional fermions, the two-point function in momentum
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space 〈ψ†1(p)ψ1(p)〉 can be computed as follows:

〈ψ†1(p)ψ1(q)〉 =

= 〈(cos(α(p))ψ̃1(p)− sin(α(p))ψ̃2(p))†(cos(α(q))ψ̃1(q)− sin(α(q))ψ̃2(q))〉 =

= sin(α(p)) sin(α(q))〈ψ̃2(p))†ψ̃2(q)〉 = sin2(α(p))δ(p− q) (61)

where in the last step we have used that canonical anticommutation relations are

preserved by unitaries such as the rotation that defines ψ̃1, ψ̃2. In the same fashion

we can obtain

〈ψ†1(p)ψ2(q)〉 = −1

2
sin(2α(p))δ(p− q) = 〈ψ†2(p)ψ1(q)〉 (62)

〈ψ†2(p)ψ2(q)〉 = cos2(α(p))δ(p− q) = δ(p− q)− 〈ψ†1(p)ψ1(q)〉 (63)

The correlators in real space, such as 〈ψ†1(x)ψ1(y)〉 are now just a Fourier trans-

form away from us. For the sharp regularization scheme the result can be obtained

analytically as shown below:

〈ψ†1(x)ψ1(y)〉 =

∫ ∫
dp dq

2π
e−i(px−qy) sin2(α(p))δ(p− q) =

=

∫ Λ

−Λ

dp

2π
e−ip(x−y) sin2

(
sign(p)

π

4

(
1− |p|

Λ

))
=

=
π sin(Λ(x− y))− 2Λ(x− y)

2(x− y) (π2 − 4Λ2(x− y)2)
(64)

And again in the same manner,

〈ψ†1(x)ψ2(y)〉 =
iΛ(π sin(Λ(x− y))− 2Λ(x− y))

π3 − 4πΛ2(x− y)2
(65)

〈ψ†2(x)ψ2(y)〉 = δ(x− y)− π sin(Λ(x− y))− 2Λ(x− y)

2(x− y) (π2 − 4Λ2(x− y)2)
= δ(x− y)− 〈ψ†1(x)ψ1(y)〉

(66)

On the other hand, for the soft regularization scheme the real space correlators are

most easily determined numerically. Both cases are represented in figures 5 and 6,

in units where Λ = 1. Notice that the functions 〈ψ†1(0)ψ1(x)〉 and 〈ψ†1(0)ψ2(x)〉 are

all we need to know since i) correlators are a function only of the distance between

the two points (cMERA is translation invariant), and ii) the ψ†2ψ2 correlator can

easily be written in terms of the ψ†1ψ1 correlator. Qualitatively, the behaviour of

correlators is very similar independently of the regularization scheme. The most

visible differences at this respect can be appreciated in the regions near Λx ∼ 1,

where the sharply regularized state presents some oscillations (which remind us of

the sinc function in the entangler for this case) that the softly regularized state does
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Figure 5: 〈ψ†
1(0)ψ1(x)〉

not. In the limits Λx � 1 and Λx � 1, the two graphs become parallel, telling

us that the only difference between both two-point functions is a multiplicative

constant close to 1. Now for the general analysis of what these figures mean: they

reflect the existence of two very different regimes for the correlators. The correlator

〈ψ†1(0)ψ1(x)〉 is approximately constant and flat until it reaches an inflection point

at xΛ ∼ O(1), i.e., when the distance between points reaches the cutoff length scale

of the theory, 1/Λ. Past this point, the correlator decreases as a (quadratic) power

law:

〈ψ†1(0)ψ1(x)〉 ∼




C Λx� 1
1

x2
Λx� 1

(67)

As for the correlator 〈ψ†1(0)ψ2(x)〉, its absolute value (notice that it is purely imagi-

nary) grows linearly from 0 at x = 0 while Λx� 1, reaches a maximum at distances

of order of the cutoff lengthscale, and subsequently decays as a power law5:

〈ψ†1(0)ψ2(x)〉 ∼




x Λx� 1
1

x
Λx� 1

(68)

5In the sharp cutoff scheme, we have indeed a very simple relation between the two correlation
functions:

〈ψ†1(x)ψ2(y)〉 =
2iΛ(x− y)

π
〈ψ†1(x)ψ1(y)〉
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Figure 6: |〈ψ†
1(0)ψ2(x)〉|

In summary, correlations in the cMERA behave differently depending on how the

length scale at which we look compares with the cutoff given by 1/Λ. The large

distance regime shows the expected features of the ground state of a CFT, namely a

power law decay of correlations (remember our discussion of MERA at the beginning

of section 2). At short distances, however, the intrinsic cutoff of the theory prevents

the correlations from diverging (save, of course, from the on-site delta correlation of

each fermionic species with itself), even reducing the ψ†1ψ2 correlator to 0. This hints

at the success of these regularization schemes in producing a state that reproduces

a CFT ground state up to a certain scale. Let us now move to the entanglement

entropy: hopefully the results there will support our conclusions from this first part.

3.2 Entanglement entropy

Suppose that we choose some spatial subregion R of our system and trace out the

rest. The reduced state on the Hilbert space associated withR will still be Gaussian.

Indeed, Wick’s theorem for the local algebra of operators supported on R is just a

particular case of Wick’s theorem for the total state. Furthermore, the correlation

matrix that characterizes the reduced state is given by the restriction of the spatial

index of the original correlation matrix to R:

ρR = trR( |ψ 〉〈ψ|) =⇒ MR = Mρ
α,β(x, y) = M

|ψ 〉
α,β (x, y)

∣∣∣∣
x,y∈R

(69)
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All the information of the reduced density matrix ρR is contained in the correla-

tion matrix MR, in particular its von Neumann entanglement entropy S(ρR) =

−trρR log2 ρR. Indeed, it can be obtained directly from MR, provided that we can

build a set of uncorrelated modes from the modes localized in R. This translates

into the correlation matrix for R being diagonal, and the density matrix decompos-

ing into a tensor product on these modes, what in turns simplifies the computation

of the entropy:

ρ =
⊗

i

ρi =⇒ S(ρ) =
∑

i

S(ρi) (70)

For bosonic variables, this computation results in the expression:

S(ρ) =
∑

λ

[
−
(
λ− 1

2

)
log2

(
λ− 1

2

)
+

(
λ+

1

2

)
log2

(
λ+

1

2

)]
(71)

where the sum runs over the symplectic eigenvalues of the correlation matrix. For

fermionic variables, the corresponding result is

S(ρ) = −
∑

λ

[λ log2 λ+ (1− λ) log2 (1− λ)] (72)

and the sum runs over the (standard) eigenvalues of the correlation matrix [9]. These

are hence the ones we want to compute in this section for our fermionic cMERA. Let

us first wonder about the short distance regime, and how much it displays properties

akin to those of a product state. For intervals of length L much shorter than 1/Λ,

the correlation matrix of the reduced state turns out to be quite simple, in the

sense that it can be well approximated by a few initial terms of its Taylor expansion

around zero:

M(x, y) = M0 + xM1x + yM1y + . . . (73)

The precise determination of how much the computed value of the entropy is affected

by this approximation is an interesting problem in perturbation theory that exceeds

nevertheless the scope of this essay (hence we do not aim to be very rigorous in

this part). A perturbation of order O(ε) of the eigenvalues of the matrix M might

result in a change in their contribution to the entropy of order up to O(ε log ε) since

the function −x log2(x)− (1− x) log2(x) that gives the entropy in terms of the said

eigenvalues is not analytic at 0 or 1, which will be a very common value for the

eigenvalues of the approximate matrix. Fortunately, a very low order expansion will

already give us very good precision in the computation of the entropy, as we will

see in a few pages. Let us then assume x, y � 1Λ, and approximate our correlation

matrix by the first term of its Taylor expansion. To keep things simple, we will do

it first for the sharp regularization scheme and we will see what we can infer for the
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soft one afterwards.

Mαβ(x, y) = 〈ψ†α(x)ψβ(y)〉 ≈





c1 α = β = 1

c2(x− y) α 6= β

δ(x− y)− c1 α = β = 2

(74)

where c1 and c2 are constants. Let us now study such a matrix’s spectrum. We

can prove that all of its eigenvalues will be 1 or 0 save for at most four of them.

Remember that these eigenvalues provide us with the entanglement entropy of the

system, and that the contribution from either a 1 or a 0 to the entropy vanishes (it

represents a mode in a pure state |1〉〈1| or |0〉〈0| which displays no mixing). Hence

our result hints at the fact that no matter how much we increase the size of our

interval, our entanglement entropy will be bounded by the maximal contribution

of this four modes (namely 4 entanglement bits or ebits). Of course, only as long

as the linear approximation holds, otherwise we will have to take more terms into

account in the expansion, and the number of modes that contribute to the entropy

will increase. To prove our statement consider an eigenvector fα(x) of Mαβ(x, y) of

eigenvalue λ. Here we consider the correlation matrix restricted to some region of

space [0, L] with L� 1

Λ
. This means

∫ L

0
Mαβ(x, y)fβ(y) dy = λfα(x) =⇒ (75)

c1

∫ L

0
f1(y) dy + c2

∫ L

0
(x− y)f2(y) dy = λf1(x) (76)

c2

∫ L

0
(x− y)f1(y) dy +

∫ L

0
δ(x− y)f2(y) dy − c1

∫ L

0
f2(y) dy = λf2(x) (77)

Rewriting the last equation as

c2

∫ L

0
(x− y)f1(y) dy − c1

∫ L

0
f2(y) dy = (1− λ)f2(x) (78)

it turns out that if λ 6= 0, 1, then we must have f1 and f2 to be linear functions:

f1(x) = a+ bx f2(x) = c+ dx (79)

whose coefficients also satisfy

λa = c1

∫ L

0
f1(y) dy − c2

∫ L

0
yf2(y) dx λb = c2

∫ L

0
f2(y) dx

(λ− 1)c = c1

∫ L

0
f2(y) dy − c2

∫ L

0
yf1(y) dx (λ− 1)d = c2

∫ L

0
f1(y) dy
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This leads us to λ belonging to the eigenvalues of the following, four dimensional

matrix:

A =




c1L
c1L

2

2
−c2L

2

2
−c2L

3

3

0 0 c2L
c2L

2

2

−c2L
2

2
−c2L

3

3
1− c1L −c1L

2

2

c2L
c2L

2

2
0 1




(80)

Once we substitute the values of the constants c1 =
(π − 2)Λ

2π2
and c2 =

i(π − 2)Λ2

π3

(which correspond to the sharp regularization scheme) and diagonalize the matrix,

it turns out that the eigenvalues only depend on ΛL (i.e. on the ratio between the

length scales given by L and 1/Λ), and since we are in the regime where this is a

small number we may expand them in a power series:

λ1 =
(π − 2)ΛL

2π2
+

(
−4 + 4π − π2

)
Λ4L4

12π6
+O

(
Λ5L5

)

λ2 = 1 +

(
1

π2
− 1

2π

)
ΛL+

(
4− 4π + π2

)
Λ4L4

12π6
+O

(
Λ5L5

)

λ3 = 1 +

(
4− 4π + π2

)
Λ4L4

12π6
+O

(
Λ5L5

)

λ4 = −
(
4− 4π + π2

)
Λ4L4

12π6
+O

(
Λ5L5

)
(81)

Of these four eigenvalues, two (λ1 and λ2) are indeed between 0 and 1 and provide

the only nontrivial contribution to the entropy in this approximation, which we

compute to be:

S(L) =
π − 2

π2 ln 2

(
1 + ln

(
2π2

π − 2

))
ΛL− π − 2

π2 ln 2
ΛL ln ΛL+ O(Λ2L2 ln ΛL) (82)

What happens with the other two eigenvalues, λ3 and λ4? They cannot provide an

entropy contribution because they are outside the interval [0, 1] (though very close

to its boundary). It turns out that these eigenvalues are an artifact of our first-order

approximation of the matrix, and it can be checked that they get closer to 0 and 1

as we add more terms. Also, notice their contribution is of order O(L4Λ4), but to

get the full contribution at that order we should at least have expanded the matrix

up to that order.

What happens if we use the soft regularization scheme? The value of c1 is to a very

good approximation the same as in the sharp case, while c2 changes appreciably.

Nevertheless, solving for the entropy’s series expansion directly in terms of c1 and c2

shows that c2 only contributes from order O(Λ4L4 log ΛL) on, hence the first terms
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of the expansion for the entropy are essentially equal for both schemes. Summing

up, S(L) tends to zero when the size of the interval shrinks, and we will see that the

two leading order terms given in (82) approximate it very well until ΛL ∼ 1, when

the approximation used is no longer valid.

Let us proceed to numerically compute the entropy scaling for the fermionic cMERA

state. To do it we have to induce a discretization at the level of the correlation matrix

in real space, after which we compute its eigenvalues and plot the entropy. Figure 7

shows our results for the entanglement entropy for the sharp and soft regularization.
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Figure 7: Numerically determined entanglement entropy profile and theoretical predictions

in short and long distance regimes, given for both sharp and soft regularization schemes.

How stable are this results with respect to the discretization lattice spacing a? The

answer is, they stabilize very quickly. Figure 8 shows the behaviour of the difference

between the computed entropy for ΛL = 64 and our best approximation to its

real value6 (the result of the computation with the finest graining) with the lattice

spacing a. We obtain for both regularizations an almost straight line of slope ∼ −2.1,

thus we deduce that the error decays approximately with a2 upon fine graining. In

particular, this means that the entanglement entropy has converged to a finite value,

something that does not happen when we study the original CFT. Indeed, in the full

CFT, the entanglement entropy for a finite region diverges, since infinitely many high

energy modes contribute to it. The only way in which we can plot a finite entropy

6The choice of that value of ΛL is due to the fact that for larger values of it the convergence is
slower, and the differences are easier to appreciate.
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Figure 8: The order of convergence is approximately quadratic.

is by introducing a UV cutoff, which is what happens when we place our theory in

a lattice with lattice spacing a, which has a cutoff at
2π

a
. Nevertheless, sending the

lattice spacing back to zero results in this cutoff diverging and so does the entropy

as well. The cMERA, on the other hand, has an intrinsic cutoff at k = Λ. Once the

lattice cutoff goes past it, the intrinsic cutoff becomes the most restrictive one, and

it stays constant, so that no new modes enter to give contributions to the entropy.

Going back to figure 7, it is patent that both theoretical predictions are satisfied by

the data to a very good extent. On the one hand, the expression in equation (82)

explains the entropies for both regularization schemes up to ΛL ∼ 1. In fact, the

transition seems to be close to ΛL ≈ 3, which is the point at which we observed it for

the correlators. Note also that it is seemingly smoother for the soft regularization

than for the sharp one. On the other hand, for the CFT (large distance) region we

expect a logarithmic scaling of entropy, with some slope proportional to the central

charge c of the theory

S(L) ∼ c

3
logL (83)

and indeed this turns out to be the case. Each fermionic species contributes 1/2 to

the central charge, hence we require a value of c = 1. Linear fits of the results in
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this region provide the values

csharp = 1.007 csoft = 1.003 (84)

which are in very good agreement with our expectation.

Entanglement contours

In our procedure of computation of entanglement entropy we ended up with a set

of uncorrelated modes χn, each of which gave us a precise contribution to the total

entropy s(χn). If we now perform a (unitary) linear transformation in the space of

modes to get a different basis ξm, there is a way in which we can assign entropy

contributions s(ξm) to these modes as well, so that the total entropy is the same:

∑

n

s(χn) =
∑

m

s(ξm) (85)

Indeed, we can just assign them as follows. Let Umn be the unitary that transforms

one basis into the other, and define

ξm = Umnχn =⇒ s(ξm) = |Umn|2s(χn) (86)

where the sum over repeated indices is implied. When we choose ξm to be a set of

localized modes (like our ψ1(x), ψ2(x)), the entropy contributions give rise to the

entanglement contour:

s(x) = s(ψ1(x)) + s(ψ2(x)) (87)

which provides us with an intuition on how the degrees of freedom in different

positions contribute to the entanglement. When we do these computations for the

cMERA, we find that most of the entanglement contributions come from the bound-

ary modes, as it was observed for standard quantum field theories [10]. We observe

one peculiarity of cMERA entanglement contours, and that is that Λ seems to be

present in them as well. Indeed, when we plot the contours (see figure 9), we see

that the boundary accumulation of entropy seems to reach a fixed size that does not

change when we increase the size of the interval, and is of the order to twice the

length scale at which the transition between the two regimes happens, i.e., about

6/Λ. Since that contribution is fixed, the scaling of entropy is given mainly by the

central part of the contour, and this we observe to be compatible with s(x) ∼ 1/x,

which gives the correct logarithmic scaling.
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Figure 9: Entanglement contours for intervals of size ΛL = 1, 2, 4, 8, 16, 32 and 64, and

lattice spacing Λa = 0.25.

4 Interpretation and conclusions

In this essay we have first reviewed the continuous MERA [7], a construction that

brings the philosophy of entanglement renormalization to the study of quantum field

theories, and provides in this way a UV regularization procedure that sucesfully re-

moves the entanglement contribution of high energy modes. We have then initiated

the study of correlations and entanglement entropy in cMERA, focusing on a par-

ticular CFT. We found that the structure of these very patently interpolate between

the CFT ground state at large distances and the product state at short distances.

4.1 Implications

This interpolation is accomplished while preserving the continuous nature of the

system. That provides the main difference with the already well-known MERA

techniques, which introduce a UV cutoff via lattice discretization. By remaining in

the continuous setup, cMERA can keep symmetries such as traslation and rotation

intact, rather than breaking them into discrete subgroups. We can also perform

linearizations and work with the Lie algebras of generators of the symmetry groups.

On a practical level, keeping a continuous system even when we regularize helps

us avoid technical inconveniences that appear on the lattice: for example, fermion

doubling. When placing a fermionic theory on the lattice, the number of fermionic
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species doubles with each discretized dimension. There exist several strategies to

deal with this problem; cMERA does it by removing the need to discretize.

4.2 A note on the c-theorem

The magnitude that we have been studying in this essay, entanglement entropy, is

no stranger to modern scientific literature, and it has been thoroughly studied in

the context of quantum field theories (see [11, 12, 13] among many others).

In [11], Casini and Huerta give a proof of the c-theorem: the existence, for any 1+1

relativistic quantum field theory, of a c-function

c(r) = r
dS(r)

dr
(88)

which is a universal dimensionless function which is nonincreasing under dilatations

and takes a finite value proportional to the central charge for CFTs. Here S(r) is the

entanglement entropy of an interval of size r. The property of being nonincreasing:

c′(r) = rS′′(r) + S′(r) ≤ 0 (89)

also implies that S(r) is concave, i.e., the slope with which it increases is smaller

for bigger r. That is, nevertheless, not what we observe for cMERA. Indeed, in

figure 7 we notice that the slope of the entropy increases when we leave the product

state regime, and enter the CFT. The reason for this apparent contradiction is very

simple: cMERA is not a relativistic theory. Indeed, the product state we have been

using is not Lorentz invariant, nor is the Hamiltonian for which cMERA is a ground

state. This allows for the violation of the concavity of the entropy function, which

assumes Lorentz invariance.

4.3 Future directions

There are many research projects for which the contents of this essay would provide a

starting point. One obvious aspect that is missing is the confirmation of whether the

results presented extend to higher dimensional free CFTs. It is to be expected that

it will be the case since the generalization process does not involve any nonstandard

manipulation. At the moment of submission of this essay we are working in repeating

our results for a bosonic theory in 2 dimensions.

Currently there are efforts being done in trying to extract conformal data from

the cMERA. It is well known that a CFT is characterized by its set of primary

operators, and its conformal dimensions and spins. Preliminary results have shown

that we can recover the conformal towers with the right scaling dimensions from
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the original CFT in the context of the cMERA. This time, the scaling operators are

given by smeared versions of the fields of the theory.

Another research line that currently involves cMERA is trying to realize the full

conformal group on the cMERA. We have seen that the scale transformations need

to be redefined in order for the cMERA state to remain scale invariant. Lorentz

boosts, as we mentioned before, cannot be kept the way they are if we want them

to leave the cMERA invariant. Translations and rotations, though, appear not to

require any modification: cMERA is manifestly translation and rotation invariant

with respect to the traditional definitions of these symmetries. It turns out that

indeed it is possible to realize all of the elements of the conformal group on the

cMERA, thus rendering it a CFT on its own [8].

But the true potential of cMERA promises to be realized in the context of interacting

theories. Free theories serve as a natural check to make sure we are keeping our feet

on the ground, but they are solvable by the means we already master. As opposed

to the standard approach to quantum field theories, the cMERA treatment of an

interacting theory would not involve a perturbative expansion. More than a decade

of studies on the lattice, where interacting and noninteracting theories are dealt with

on equal grounds, may provide intuition as to how to do the same in the continuum.

This hints at the possibility of originating a new, variational approach to quantum

field theory which might be relevant in all the fields that use QFT as a tool to

understand physical systems.
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