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Resumen

A la hora de transmitir y procesar información hemos de tener en cuenta que la probabilidad de fallo de
nuestros sistemas en el mundo real es distinta de cero, y por tanto existe la posibilidad de que durante
dichos procedimientos se introduzcan errores en la información tratada. Para intentar prevenir este
problema se desarrollaron los códigos correctores de errores, cuya filosofía es relativamente sencilla: la
información que se pretende proteger se codifica en un número de bits mayor que el mínimo necesario,
de modo que la consiguiente redundancia permita recuperar la información incluso en el caso de que
algunos bits se vean sometidos a errores.

Tras la aparición de la teoría cuántica a principios del siglo XX, numerosos esfuerzos se han ded-
icado a explotar los principios de la misma para obtener ventajas en el ámbito del procesado de infor-
mación, dando lugar al nacimiento de la teoría de la información cuántica. Al contrario que en el caso
clásico, en el que los bits, unidades mínimas de información, son variables reales que toman los valores
0 y 1; en información cuántica se emplean los qubits o quantum bits, que son vectores en un espacio
de Hilbert bidimensional, que no sólo permite los valores |0〉 y |1〉, los cuales ahora forman una base
ortonormal de dicho espacio, sino también combinaciones lineales α|0〉+ β |1〉 de los mismos. Los
axiomas de la mecánica cuántica indican además que el estado de un conjunto de qubits es de nuevo un
vector en el espacio producto tensorial de los espacios de Hilbert asociados a cada qubit.

Los sistemas cuánticos son particularmente sensibles a interacciones con su entorno, lo que hace
aún más relevante la corrección de errores en este caso. Un código corrector de errores cuántico es
una isometría entre espacios de Hilbert que codifican el estado de información de un cierto número de
qubits en un número mayor de qubits. La imagen de esta isometría es el llamado subespacio de código,
que es isomorfo al espacio de estados de los qubits codificados, y cuyas propiedades son de relevancia
para comprender cómo de útil es el código. Los códigos estabilizadores son una clase particular de
códigos para los que dicho subespacio puede ser caracterizado mediante su estabilizador, un grupo de
operadores lineales que deja invariantes todos los elementos del subespacio. Conocer el estabilizador
de un código, y en particular un conjunto de generadores del mismo facilita significativamente parte
del trabajo con el código. El código básico con el que se construyen todos los que vamos a tratar es el
llamado five qubit code o código de cinco qubits, que codifica la información de un único qubit lógico
(input) en cinco qubits físicos (output). Este código es capaz de preservar la información frente a la
desaparición o borrado de dos qubits cualesquiera de los cinco, y también es capaz de corregir un error
cualquiera en uno de los qubits sin necesidad de la información de cuál de ellos ha sido alterado.

Además de su uso en el ámbito del procesado cuántico de información, los códigos cuánticos cor-
rectores de errores han sido objeto de mucha atención recientemente debido a una propuesta que los
conectaría con el principio holográfico y la corerspondencia AdS/CFT, una dualidad existente entre
teorías gravitatorias y teorías cuánticas de campos que se está estudiando con el objetivo de entender
cómo llegar a una teoría de la gravitación cuántica. En 2015, un equipo de investigadores [1] intro-
dujo los códigos cuánticos correctores de errores holográficos como modelo de juguete para explorar
la relación entre corrección de errores y holografía. Estos códigos se definen por medio de un circuito
cuántico, o red tensorial, que es una representación gráfica de las operaciones de codificación a las que
se someten los qubits lógicos para obtener el resultado, los qubits físicos. En concreto, en los códigos
con los que trabajamos la geometría subyacente a este circuito es hiperbólica, y los construiremos a
partir de una teselación del disco de Poincaré de símbolo de Schläffi (4,5) que truncaremos para que sea
finita. Cada vértice de la red corresponderá a una operación de codificación como la del código de cinco
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vi Chapter 0. Resumen

qubits.
El objetivo principal de este trabajo es el cómputo de los generadores del estabilizador de una fa-

milia particular de códigos correctores de errores cuánticos holográficos que llamamos, a falta de una
nomenclatura más sistemática, códigos basados en las caras o FBC (face based codes), pues el proceso
de truncado de la teselación infinita para dar un circuito finito se realiza prestando atención a las caras de
la misma. De esta manera obtenemos una familia de códigos indexada por los números naturales y con-
struida añadiendo sucesivas capas (que incluyen nuevos qubits lógicos y físicos, y nuevas operaciones
de codificación) a una red creciente. El método que empleamos está inspirado en [1] y [2] y consiste
en construir el estabilizador el código “empujando” hacia la frontera del mismo los estabilizadores de
los códigos más pequeños que lo componen. La última es por supuesto una frase muy poco técnica que
será reformulada de forma rigurosa en el texto principal del trabajo.

Para determinar el estabilizador de los citados códigos comenzamos centrándonos en el primero
de ellos. Con el método empleado podemos generar elementos del estabilizador de manera relativa-
mente sencilla a partir de lo que llamamos construcciones de estabilizador. A partir de ellas obtenemos
generadores muy localizados que son claramente independendientes pues actúan sobre qubits físicos
distintos. También encontramos otros generadores con soportes más amplios y probamos que son inde-
pendientes entre sí y de los demás en una aplicación sencilla de la teoría de grupos. Puesto que sabemos
cuál es el tamaño del estabilizador, encontrar suficientes generadores que se pueden hallar a partir de
construcciones de estabilizador nos permite probar que podemos obtener todo el grupo de esta manera.

Pasamos posteriormente a generalizar el procedimiento para cualquiera de estos códigos (cualquier
número de capas). Para ello combinamos las dos estrategias que empleamos en el caso de una sola
capa. En primer lugar, construimos generadores muy localizados que sólo actúan sobre unos pocos
qubits físicos. En segundo lugar aprovechamos la existencia de un homomorfismo entre el estabilizador
de un código y el del código con una capa menos para dar una construcción recursiva de los generadores
restantes hasta cubrir el total necesario.

El estudio del estabilizador de este tipo de códigos no sólo plantea las ventajas habituales en la
caracterización de los mismos como códigos correctores de errores, sino que abre la puerta a analizar
fenómenos como la localización de los generadores del estabilizador (el hecho de que actúen de manera
no trivial en sólo una fracción reducida de los qubits de la frontera), que podría proveernos de intuición
a la hora de entender la relación entre estos modelos de juguete y la correspondencia AdS/CFT. Por otra
parte, quedan abiertos problemas como la determinación de las fault-tolerant gates o puertas lógicas a
prueba de errores, como se denominan aquellas implementaciones a nivel de código de puertas lógicas
que optimizan las propiedades de corrección de errores del mismo.
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Chapter 1

Quantum Error Correction

It is the aim of this chapter to introduce the formalism of quantum error correction that will be used in the
second part of this work, where the original contributions will be presented. No knowledge of quantum
mechanics is assumed from the reader, and hence we will intend to keep everything self-contained. Most
of what is explained here can be found in references [3, 4, 5].

1.1 Basic definitions and notation

1.1.1 Quantum states

In quantum mechanics, one of the most fundamental objects we encounter is the state of a quantum
system. Anything that behaves according to quantum mechanics (such as an electron or a photon, or
any collection of them) will be a quantum system that will find itself in a particular state. This state
contains all the information about every degree of freedom of the system (such as the position of a
particle, or its magnetic moment) and belongs to a set of states that must have a particular structure:

Definition 1.1. The space of states of a quantum system is a Hilbert space (H ,〈,〉), whose elements
represent the possible physical states in which we can find the system. In particular, if the Hilbert space
is two-dimensional, that is H ∼= C2, the system will be called a two level system or a qubit.

Throughout this thesis we will use the standard Dirac notation, in which vectors belonging to a space
of states H are written in the so-called ket-form: |ψ〉 ∈H . Their associated linear forms in the dual of
H will therefore assume the bra-form: 〈ψ| ∈H ∗, so that the inner product of vectors |χ〉, |ψ〉 ∈H is
given by 〈χ|ψ〉, that is the bra 〈χ| acting on the ket |ψ〉. Also, in this notation |ψ〉〈χ| is a linear operator
on H which will map a vector |ξ 〉 to the vector 〈χ|ξ 〉|ψ〉. In particular, this means that:

|ψ〉〈ψ|
〈ψ|ψ〉

is a rank-one projector on the one-dimensional subspace generated by |ψ〉.
Depending on what system we are dealing with, the space of states will have different aspect. For

example, if we consider a particle which can move in one dimension, its space of states is spanned by
the states {|x〉}x∈R, where x denotes the position of the particle. Clearly this is an infinite dimensional
Hilbert space, and requires some knowledge of functional analysis to be dealt with rigorously. But
let us go back to qubits. Any physical system that has two fundamentally different possible quantum
states, such as an electron’s intrinsic angular momentum or spin (which can point “up” or “down”),
or a photon’s polarization axis (horizontal or vertical) realizes the abstract notion of a qubit. Qubits
play in quantum information science the same role that bits do in classical information science as the
fundamental units of information. Let H be the Hilbert space of a qubit, then we can choose a pair of
orthonormal vectors that will constitute a basis of such space and that we will denote in a very suggestive
way:

H = span{|0〉, |1〉} 〈0|1〉= 0

1



2 Chapter 1. Quantum Error Correction

Indeed, a qubit in the state |0〉 will be the analogue of a classical bit of value 0, while a qubit in the state
|1〉 will be the analogue of the classical bit having value 1. This is called the computational basis The
rules of quantum mechanics, nevertheless, allow for more general states of the form α|0〉+β |1〉 ∈H ,
for α,β ∈ C. These will in general not correspond to classical bit states, specifically when α,β 6= 0, in
which case we will say that our qubit is in a superposition. The following is also standard notation for
another orthonormal basis in H :

|+〉= 1√
2
(|0〉+ |1〉) |−〉= 1√

2
(|0〉− |1〉)

The fact that we are considering orthonormal bases goes a little bit further than just mere computa-
tional convenience: in quantum mechanics, states which are proportional to each other are considered to
be indistinguishable from a physical point of view. In more precise words, the space of different states
of a quantum system is the space of rays in the associated Hilbert space, i. e., the projective Hilbert
space PH . In general, to work in the quantum framework we normalize our states, that is, we use a
representative of the equivalence class that has norm 1, and that is what we will assume in the rest of this
work (otherwise whatever we computed with the theory, such as probabilities of different outcomes of
measurements, would need to be renormalized for them to be independent of the representative used).

To be able to perform nontrivial quantum computations we should be able to deal with systems
bigger than just one qubit, in the same fashion that classical computers do not carry out calculations
using just one bit. Quantum mechanics provides us with a rule of thumb (technically an axiom) as to
how to build the space of states of systems composed of smaller subsystems:

Axiom 1.1. The space of states HAB of a system composed of subsystems A and B whose respective
spaces of states are HA and HB is the tensor product of these:

H = HA⊗HB

Hence, the space of states of a set of n qubits (from now on we will use the notation Hn to refer to
such Hilbert spaces) will be isomorphic to

Hn ∼= C2⊗ . . .⊗C2︸ ︷︷ ︸
n

= (C2)⊗n = C2n

And the computational basis will be given by the corresponding tensor product of the computational
bases of the individual qubits, as seen here for the case n = 2:

|0〉⊗ |0〉= |0〉|0〉= |00〉 |0〉⊗ |1〉= |0〉|1〉= |01〉
|1〉⊗ |0〉= |1〉|0〉= |10〉 |1〉⊗ |1〉= |1〉|1〉= |11〉

1.1.2 Quantum operations

When it comes to the physical interpretation of quantum mechanics, the inner product structure of the
Hilbert space is of the utmost importance. Indeed, the axiom known as the Born rule, which we will
introduce below, produces probabilities for the result of a measurement in terms of the inner product.
As a consequence, the allowed operations1 that we can perform on a quantum state are those which
preserve this structure, usually called unitary operations:

Definition 1.2. The unitary group U (H ) on the Hilbert space H is the set of linear operators defined
on it U : H 7−→H which preserve the inner product, that is

〈Uχ|Uψ〉= 〈χ|ψ〉 ∀|ψ〉, |χ〉 ∈H (1.1)
1To be fair, the most general quantum operation that is allowed by the rules of quantum mechanics is a completely positive,

trace preserving linear map or CPTP map, but for the purpose of this essay we can safely restrict ourselves to unitary operations.
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In the case of a qubit, the unitary group is the set of 2×2 complex unitary matrices:

U (C2) = U (2,C) = {U ∈M(2,C)|U−1 =U†} (1.2)

Of this group we would like to single out a very particular discrete subgroup. Let us start by defining
the following maps:

Definition 1.3. The bit flip map, denoted X , is the following element of U (C2):

X = |1〉〈0|+ |0〉〈1|
The phase flip map, denoted Z, is the following element of U (C2):

Z = |0〉〈0|− |1〉〈1|
Notice that X implements a NOT operation: it flips a qubit in the state |0〉 to the state |1〉 and

viceversa. Z on the other hand changes the relative phase between the |0〉 and |1〉 components of the
vector it acts on, and thus it is only relevant whenever there is a superposition. The composition of these
two maps is usually denoted Y = iXZ. Their matrix representations in the computational basis are given
by:

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y =

(
0 −i
i 0

)
(1.3)

It is easy to see that these operators anticommute pairwise:

XY =−Y X = iZ Y Z =−ZY = iX XZ =−ZX = iY (1.4)

X , Y and Z are also Hermitian, which, together with them being unitary implies that they are idempotent

X2 = Y 2 = Z2 = 1 (1.5)

Equations (1.4) and (1.5) will be very useful in determining the elements of the Pauli group:

Definition 1.4. The Pauli group G on one qubit is the subgroup of U (C2) generated by i, X and Z,
where i≡ i1 is the imaginary unit, and X and Z are defined as above.

This group is finite and has the following 16 elements:

G = {±1,±X ,±Y,±Z,±i1,±iX ,±iY,±iZ}
Remark 1.1. Any 2× 2 unitary U can be written as U = a1+ bX + cY + dZ, with a,b,c,d ∈ C, thus
these operators are relevant since they form a (complex) basis for U (C2). Also, U (C2) is a Lie group,
whose Lie algebra u(C2) is be given by the 2×2 Hermitian operators2, for which a (this time real) basis
is again given by {1,X ,Y,Z}. Their matrix representations are usually called Pauli matrices

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
and they satisfy the following commutation relations:

[σ j,σk] =
3

∑
l=1

iε jklσl

where ε jlk takes the value 1 if jlk is an even permutation of 123, -1 if it is an odd permutation, and
0 otherwise. This makes these operators a set of so-called angular momentum operators, and they
therefore play a key role in quantum physics.

2This is true as long as we define the exponential map as

u 7−→U

α 7−→ eiα

Alternatively, there is a convention in which the imaginary unit is removed from the exponent. In this convention, we would
have the elements of the Lie algebra to be anti-Hermitian operators.
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1.1.3 Quantum measurement

Any physical theory that we want to validate must be able to make predictions that can be confirmed or
ruled out by experiment. One of the key aspects of quantum mechanics involves precisely the predictions
that it makes when it comes to measuring physical quantities. Contrary to the previous conceptions
that we had of our Universe, where perfect knowledge of the state of a system guaranteed us perfect
predictability of the outcome of any experiment, quantum mechanics turns out to be a probabilistic
theory: indeed, the result of a measurement is a random variable with a certain probability distribution,
rather than a single, deterministic value. But let us first define what it is that we can measure within this
framework:

Definition 1.5. An observable A of a quantum system is a Hermitian operator3 defined on the space of
states of the system. Its eigenvectors are usually referred to as eigenstates of the observable.

Every physical magnitude that we can think of as measurable in a particular system, such as the
energy, or the component of angular momentum along a certain direction, will have its associated ob-
servable. In our abstract theoretical analysis we will not need, in principle, to worry about the reciprocal:
we will consider any observable of the space of linear operators of the Hilbert space of the system as
susceptible of being measured in a laboratory, and hence we will seldom refer to the actual physical
meaning of the observable. This might in fact depend on the actual physical implementation. For ex-
ample, in optical implementations of quantum information processing it is usual to have the observable
Z represent the polarization of a photon, measured in the horizontal-vertical basis. On the other hand,
when using spin 1/2 particles, such as in NMR (nuclear magnetic resonance) quantum information pro-
cessing, the observable Z is associated to the direction at which the magnetic moment of the particle
points, along a given axis (spin 1/2 particles are those whose magnetic moment is quantized to have only
two possible values when measured along any axis, hence they act as qubits for their space of states is
two-dimensional).

Let us now focus on the actual measurement process. There are two aspects of it that we need
to care about: first, the probability distribution of the outcome of the measurement; second, the state
update rule, namely, how we determine the state of the system after the measurement has been made4.
The following can be taken as definitions, or axioms of quantum mechanics. We present them in its
finite dimensional version, i.e., we only consider spaces of states of finite dimension for our systems.

Axiom 1.2. (Born’s rule) Let |ψ〉 ∈H be a state of a particular quantum system, and let A be an
observable of this system. Let {ai}r

i=1 be the set of different eigenvalues of A, and let {Pi}r
i=1 denote the

set of projectors over the corresponding eigenspaces. For instance, if ai is an eigenvalue of geometric
multiplicity one (we will say that it is nondegenerate), and we call |ai〉 the corresponding normalized
eigenvector:

A|ai〉= ai|ai〉 Pi = |ai〉〈ai|

Then the outcome of a measurement of A when the system is in the state |ψ〉 is a real-valued random
variable XA with a discrete probability distribution given by

P(XA = x) =

{
〈ψ|Pi|ψ〉= ‖Pi|ψ〉‖2 x = ai i = 1, . . . ,r
0 otherwise

(1.6)

where ‖ · ‖ denotes the norm induced on H by its inner product structure. Note that if ai is nondegen-
erate we can write:

P(XA = ai) = |〈ai|ψ〉|2 (1.7)

3Whenever we consider infinite dimensional systems, this definition needs to be revised, but we will not need to worry
about such technicalities for this work.

4Yes, in quantum mechanics measuring a system causes it to potentially change its state! This is one of the unusual
properties of quantum mechanics that underlies the so-called measurement problem
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time

X

Z

U

|0〉

|0〉

|00〉 |00〉 |10〉 |11〉 U |11〉

Figure 1.1: A simple example of a quantum circuit. Below, the state of the system after each step of
computation.

Note that since A is an observable, we know its eigenvalues are real, and hence the outcome is well-
defined. From the interpretation of these eigenvalues as the possible outcomes of, say, a measurement
of the energy of a system, it is clear why we impose that these eigenvalues be real.

Axiom 1.3. (State update rule) Let |ψ〉 and A be as above. Upon a measurement of A, the state |ψ〉 is
updated by action of the projection operator Pi associated to the eigenvalue observed in the measure-
ment. Hence, after a measurement where the outcome turns out to be ai, the state of the system will be
given by the following (normalized) vector in H :

Pi|ψ〉
‖Pi|ψ〉‖

=
Pi|ψ〉√
P(XA)

1.1.4 Quantum circuits and tensor networks

In quantum computation it is useful to employ some diagrammatical notation to represent quantum
operations applied to qubits. Figure 1.1 represents a simple example of a quantum circuit. Each line
represents a particular qubit, and the quantum operations applied on them are generally drawn as squares
over these lines. Wheneverfone of these squares does not overlap with a particular qubit’s line, it is
interpreted as the corresponding quantum operation acting trivially on said qubit, that is, the unitary is a
tensor product of the identity, acting on that qubit, and a less trivial unitary acting on the rest of qubits.
In this context, these quantum operations are usually called quantum gates, due to the analogy with
logical gates in computer science. Certain gates have special notations due to them being particularly
important or widespread. It is the case of the CNOT (controlled-NOT) gate which is depicted in figure
1.1, and which is defined as:

UCNOT(|x1〉|x2〉) = |x1〉|x1⊕ x2〉
where ⊕ denotes the boolean sum of bit, which can also be understood as the sum over the field Z2.
Note that this operator flips the second qubit if the first one is in the state |1〉 and does not do anything
otherwise. Two qubit unitaries, in general, can introduce entanglement (quantum correlations) among
the two qubits, as can be seen if we apply a CNOT to the following product state:

UCNOT|+0〉=UCNOT

( |0〉+ |1〉√
2
|0〉
)
=

(
UCNOT|00〉+UCNOT|10〉√

2

)
=

1√
2
(|00〉+ |11〉)

A slightly more general version of a quantum circuit is given by a tensor network. There are many
ways in which one can define a tensor, and in particular it can be done intrinsically, but here we will
deem more practical to just speak of a tensor, once bases are fixed, as a multi-indexed array of complex
numbers that encode a multilinear map (basically the generalization of a matrix):
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1

2

3

4

Figure 1.2: Left: pictorial depiction of a tensor. Note that given out of context, this tensor can be
interpreted as a map from Hilbert spaces H1⊗H2 to H3⊗H4, H3 to H1⊗H2⊗H4,..., even as a
map from C to H1⊗H2⊗H3⊗H4, which is equivalent to choosing a particular state (that of norm 1
in the image subspace of the said map), in the total Hilbert space. Right: a minimal example of a tensor
network representing the contraction of two three-legged tensors to give a four-legged tensor.

Definition 1.6. Let H1, . . . ,Hr,Hr+1, . . .Hn be Hilbert spaces of dimensions d1, . . . ,dr,dr+1, . . . ,dn and
choose respective bases {b1

j} j=1,...,d1 , . . . ,{bn
j} j=1,...,dn for each of them. A tensor Ta1a2...an (1≤ ai ≤ di)

is a multi-indexed array of complex numbers that encode a multilinear map T : H1⊗ . . .⊗Hr −→Hr+1⊗
. . .⊗Hn

T |b1
j1b2

j2 . . .b
r
jr〉= ∑

ji=1,...,di
r+1≤i≤n

Tj1 j2... jn |br+1
jr+1

br+2
jr+2...

bn
jn〉 (1.8)

for any choice of ji,1≤ i≤ r.

From now on we will assume that all of the Hilbert spaces involved correspond to qubits. Tensors
are very easily depicted as more or less blob-like bodys with one leg per index / Hilbert space (see figure
1.2). This allows us to represent tensor contractions (the generalization of matrix products) easily:

Definition 1.7. Let Tab,Scd be tensors (we assume them to have two indices only for notational simplic-
ity, the definition is general), such that they have indices, say b and c associated to the same basis of the
same Hilbert space of dimension D. Then the contraction of T and S along that index is another tensor
Uad given by

Uad =
D

∑
i=1

TaiSid

Definition 1.8. A tensor network is a tensor resulting of the contraction of other tensors placed on the
vertices of a graph, so that the edges of said graph represent tensor contractions.

As it is explained in [1], tensors can be view as maps from the Hilbert space associated to any subset
of their legs to the Hilbert space associated to the remaining legs. The tensors we will be using satisfy
a particular property:

Definition 1.9. A tensor with an even number of indices of the same dimension Ta1...a2n is perfect if for
any partition of its set of indices/legs {A,Ac} with |A| ≤ |Ac|, T is proportional to an isometric tensor
from A to Ac, i.e., a tensor that codifies an isometry from the Hilbert space associated to A to the Hilbert
space associated to Ac.

1.2 Quantum Error Correcting Codes

The theory of quantum information provides us with many applications that exploit the singular features
of quantum mechanics to improve our information treatment capabilities. Nevertheless, when it comes
to putting these ideas into practice, a new difficulty shows up: systems that exhibit quantum behaviour
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are extremely delicate. They are vulnerable to noise and the influence of the environment they are placed
in may lead to very quick decoherence (basically defined, without being very precise here, as the loss
by a system of its quantum properties, thus rendering it useless for the purpose of quantum information
processing).

To solve this problem and hence be able to implement quantum algorithms in physical devices, the
ideas of quantum error correction and fault-tolerant quantum computation were developed. The
principle of quantum error correction codes is very simple, and can be understood without recurring to
any quantum formalism, as the very widespread example that we now present shows [3]. Assume that
Alice has to send a message to Bob consisting of a single bit, 0 or 1. Unfortunately, the channel they
possess to communicate is noisy, and bits sent through it have a certain (hopefully small) probability of
being “flipped” from 0 to 1 or 1 to 0. She fears that her message might be totally changed, so she agrees
with Bob that she will send three copies of her bit to Bob, with the hope that at least two of them will
reach him unchanged. That way, even if one of the bits is flipped, Bob will still be able to retrieve the
message by taking the value that is repeated a majority of times. This simple example contains all the
main steps of quantum error correction protocols: first, Alice encodes her message (called the logical
bit) in a series of additional bits (called the physical bits, since these are in principle the only ones that
we need to realize physically). Then she sends the physical bits through the noisy channel, which flips
some of them. These bits now get to Bob, who performs a procedure of error detection (he notices
one of the bits disagrees with the others, and assumes that a bit-flip error has occurred to this bit) and
correction (he dismisses the conflicting bit’s minority report and turns it back into the majoritary value).
Finally, Bob inverts the coding operation and hence decodes the message from Alice.

Encoding Noise Correction Decoding
0 −→ 000 −→ 001 −→ 000 −→ 0

This method, of course, is not infalible. In a very unlucky case, two or more of the bits sent by Alice
could be affected by errors, and hence Bob could fail in his correction procedure, and get the wrong
message our of the whole process. Nevertheless, the probability of this happening is, assuming each bit
is flipped independently with probability p:

P(“Two or more flips”) = 3p2(1− p)+ p3

which is strictly smaller than p for p ∈ (0,1/2), thus providing an improvement on the scenario without
coding.

Suppose Alice now wants to transmit a qubit to Bob. She might decide to encode it in a very similar
fashion:

|0〉 −→ |000〉 |1〉 −→ |111〉
However, now our spectrum of possibilities is greatly enriched. For example, Alice might want to send
not a state of the computational basis, but a superposition like α|0〉+β |1〉, which she will encode, by
linearity of the encoding map (see definition below) as α|000〉+β |111〉. Also the spectrum of possible
errors that affect our qubits is increased. The noisy channel could, for instance, perform a Z operation
on one of the qubits, resulting in Bob getting the state α|000〉−β |111〉 and decoding it to α|0〉−β |1〉
without being able to spot the error. Thus, the same idea of error correction can be applied in the
quantum case to render quantum information processing feasible, but must be improved upon for it
to give us better protection against errors, all depending on the resources that we have available (for
example, quantum mechanics gives us entanglement (quantum correlations) as a resource to improve
our capabilities, and in fact, contrary to our very simple example, must encoded states are usually highly
entangled).

Let us then now start by defining what we mean by a quantum error correcting code:

Definition 1.10. Let k ≤ n be natural numbers, and HL ∼= Hk,HP ∼= Hn be the state spaces associated
to k and n qubits respectively. A [[n,k]]-quantum error correcting code (or QECC for short) is an
isometric linear map Φ : HL 7−→HP. The spaces HL and HP will be called logical space and physical
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space respectively, whereas the image of Φ, denoted by C = ImΦ = Φ(HL) ⊂HP will be called the
code subspace.

One of the main ideas behind error correcting codes is that states outside the code subspace are not
valid codewords, and hence when detected they provide evidence for the presence of an error that can
then be identified and corrected.

1.2.1 Error models

It is impossible to find a code that will protect our information against any kind of errors. Indeed,
consider an error E consistent on the total erasure of the information of the physical qubits:

E (|ψ〉phys) = |00 . . .0〉 ∀|ψ〉phys

This map is not invertible, and hence once it happens it is impossible to retrieve any of the original
information. This is an extreme example, but it tells us that our best hope is to build codes that are ef-
fective against a particular set of errors and hope that the probability of any other perturbation occurring
is negligible. The errors that the code can deal with are called correctable errors. We can characterize
the correctable errors by the following property:

Theorem 1.1. Let {Ei}i∈I be a set of error operators acting on the physical Hilbert space HP of a
QECC Φ with code subspace C . Then

PEiE
†
j P = αi jP ∀i, j ∈I (1.9)

where P is the projector onto C , is a necessary and sufficient condition for any error E that is a
linear combination of elements in {Ei}i∈I to be correctable, that is, for the existence of an algorithmic
procedure that restores the system to its original state.

Proof. See [3].

Error models that assume independence of the errors on different physical qubits are quite typical.
Suppose that we choose our set {Ei} to be given by the Pauli operators on the j-th physical qubit
{1,X j,Yj,Z j}. This operators span the space of unitaries that act on the j-th qubit, hence if the relation
(1.9) is satisfied for these Pauli operators, the code allows to correct any single-qubit error acting on the
j-th qubit.

1.2.2 Encoded operations

In the same way as when we perform classical computation, we not only would like to store the infor-
mation represented by our qubits, but we would also like to process it. This involves applying linear
operations or gates to the logical qubits, such as bit flips X or controlled nots UcNOT. It would be,
however, against the philosophy of the whole quantum error correction scheme if we had to decode the
state, apply the corresponding gate, and reencode the state every time that we wanted to manipulate the
information. Physically, this would mean that during some time, while we are applying the gate, the
information is in its original form and hence unprotected against errors. Back to our original example,
suppose that Bob wants to perform a bit flip (logical negation) on the message he received from Al-
ice before sending it to a third party, Charlie. In our non-ideal world, his bit flip operation might fail
with some nonvanishing probability p < 1/2. If he first decoded Alice’s message, then applied the gate
and reencoded the message, the whole procedure would produce the wrong output with probability p.
On the other hand, Bob might apply the bit flip to each of the three bits the previous error correction
procedure outputted, without decoding. This operation we call encoded bit flip. Assume one of the
three independent bit flips fails, then the output of the operation will be something like 101, which is
correctable to 111. Only when two or more bit flips fail does the whole scheme fail, and this again
happens with probability 3p2(1− p)+ p3 < p.
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Definition 1.11. Let Φ be a quantum error correcting code with ImΦ = C , and U : HL 7−→ HL a
quantum operation on the logical qubits. We say that V : C 7−→ C is an encoded version of U if the
following diagram

HL HL

C C

U

Φ Φ

V

commutes.

Note that in general the encoded version of a logical gate will not be unique. An active area of
research is, given a particular code, the study of how to implement quantum gates fault-tolerantly. The
concept of fault-tolerance is quite broad, and a precise definition depends on the particular setting, but
in general fault-tolerant gates are those which optimize the protection against errors. For example, if our
error models mainly assume that errors affect single qubits, it is a good idea to choose encoded gates to
be transversal, that is, acting independently on each qubit (analogously to the encoded bit flip from the
example, which was applied to every qubit independently of the others).

1.3 Stabilizer codes

In this section, we will introduce a particular family of QECC, called stabilizer codes. These codes
present a series of advantages bLet’s begin by giving some definitions.

Definition 1.12. The Pauli group on n qubits Gn is given by the tensor product5 of the Pauli groups
acting on each particular qubit, i.e. it is the tensor product of n copies of the Pauli group.

Lemma 1.1. The Pauli group on n qubits is generated by

{i,X1,Z1,X2,Z2, . . . ,Xn,Zn}

where i is the imaginary unit:
i≡ i1⊗1⊗ . . .⊗1︸ ︷︷ ︸

n

and X j,Z j are the corresponding Pauli operators on the j-th qubit:

X j ≡ 1⊗ . . .⊗1⊗ X︸︷︷︸
j

⊗1 . . .⊗1

Proof. It follows from the definitions of Pauli group on one and n qubits.

Definition 1.13. The weight of an element of the Pauli group is the number of qubits on which it acts
nontrivially (i.e. with X , Y or Z rather than 1.).

The Pauli group on n qubits is a subgroup of the group of unitary operators on Hn qubits, and
therefore it acts naturally on this space.

Definition 1.14. Let Φ be a [[n,k]] quantum error correcting code of code subspace C , and assume there
exists S≤ Gn such that

C = {|x〉 ∈Hn |M|x〉= |x〉, ∀M ∈ S} (1.10)

Then Φ will be called a stabilizer code and S will be called the stabilizer of the code.

Lemma 1.2. The stabilizer of a [[n,k]] QECC has n− k generators.
5Before any reader gets confused, let us specify that this tensor product of groups is a particular, physicist notation for the

direct (Cartesian) product of groups, inherited in some way from the fact that the direct product of Pauli groups is going to act
on the tensor product of the Hilbert spaces of the qubits.
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Proof. We adapt the proof from [3]. By the definition of the Pauli group, we know that all of its elements
square to either 1⊗n or−1⊗n. In the first case, their minimal polinomial is x2−1, hence their eigenvalues
are either 1 or -1. In the second case, the minimal polynomial is x2+1 and the eigenvalues are i or−i. If
we want our code subspace to be nontrivial, these are not acceptable elements of the stabilizer, so every
element of the stabilizer is diagonalizable with eigenvalues ±1. Given a set of independent, commuting
generators g1, . . . ,gr ∈ Gn we can build a projector on their common +1-eigenspace, C :

P =
1
2r

r

∏
i=1

(1+gi)

Indeed, adding the identity and dividing by two shifts the eigenvalues from +1,-1 to +1,0 while preserv-
ing the eigenspaces. Now, for tensor products of operators it holds:

tr(A⊗B) = tr(A)tr(B)

Thus every nontrivial element of the stabilizer has trace 0, for X ,Y,Z have trace 0. If we take the trace at
both sides of (1.3), having first expanded the product on the right hand side, we see than only the term
that arises from the product of all the identities has nonvanishing trace (equal to 2n, the dimension of
the operators). Hence

trP = dimC = 2k =
2n

2r =⇒ r = n− k

Knowing a set of generators of the stabilizer of a stabilizer code can be very useful when applying
quantum error correction with errors belonging to the Pauli group on the physical qubits, or linear
combinations of these. Of course, not all operations on the physical qubits will be correctable. Indeed,
we also want the freedom to perform encoded operations, which by definition will be operations that,
while preserving the code subspace, will not fix every one of its elements, as happens with the stabilizer
elements.

Lemma 1.3. Every pair of elements in the Pauli group over n qubits either commute or anticommute.

Proof. We know that every element in the Pauli group squares to ±1⊗n. Hence, for a,b ∈ Gn:

ab = σ(bb)ab(aa) = σb(baba)a = σσ
′ba

where σ ,σ ′ ∈ {+1,−1}.

Proposition 1.1. The subgroup of Gn that preserves C is the centralizer of S in Gn, Z(S), which also
coincides with the normalizer of S in Gn, N(S).

Proof. Let g ∈ Z(S), s ∈ S and |ψ〉 ∈ C . The centralizer of S is the subgroup of all the elements of Gn

that commute with every element in S. Hence we have

sg|ψ〉= gs|ψ〉= g|ψ〉∀s ∈ S =⇒ gC ⊂ C

Conversely, if gC ⊂ C , we have

sg|ψ〉= g|ψ〉= gs|ψ〉 ∀s ∈ S =⇒ [g,S] = 0 =⇒ g ∈ Z(S)

where we have used the previous lemma. The normalizer of S is defined as the subgroup of the elements
that leave S invariant under conjugation:

N(S) = {g ∈ Gn |gsg−1 ∈ S ∀s ∈ S}
Clearly Z(S) ⊂ N(S) but also N(S) ⊂ Z(S) since every pair of elements of Gn either commute or anti-
commute, and for g ∈ N(S) anticommutation with any s ∈ S is forbidden, since it would lead to

gsg−1 =−sgg−1 =−s ∈ S =⇒ −1 ∈ S

which is a contradiction because −1 can never be in a stabilizer (it does not have eigenstates of eigen-
value +1).
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Hence in the Pauli group we find three kinds of operators: those in S, which leave every codeword
invariant; those in N(S)\S, which preserve the codespace as a whole but act nontrivially on it, and
those in Gn\N(S), which do not preserve the code subspace. This is due to them anticommuting with
at least one of the generators gi of the stabilizer (remember that in the Pauli group any two elements
commute or anticommute). This makes them susceptible of being identified, in the following way. In
every error detection step, we measure the observables g1, . . . ,gn−k. Since all these observables have
spectrum {+1,−1}, we will obtain an n− k -tuple of ±1’s which is called a syndrome. If the state
|ψ〉 of the system belongs to C , it is an eigenstate of eigenvalue +1 of all of them, hence the outcome
of all of these measurements will be a string of +1’s. Now suppose that an error E /∈ N(S) occurs. E
anticommutes with at least one generator, say g j. Then E|ψ〉 is an eigenstate of eigenvalue −1 of g j,
since

g jE|ψ〉=−Eg j|ψ〉=−E|ψ〉
and the outcome of this particular measurement will be -1 with total certainty. Thus, a syndrome where
some of the outcomes are -1 signals that an error outside the normalizer has occurred, taking the state
outside of the code subsystem. If the correspondence between syndrome and error is unique, we will
be able to deduce which error happened and correct it. It could also be the case that the state became
a superposition of the correct state and the one affected by the error: 1√

2
(|ψ〉+E|ψ〉). In this case, the

state update rule tells us that, after measuring g j, the new state will be the projection of the former state
on the corresponding eigenspace of g j: if we get +1, the new state is |ψ〉 and we have involuntarily
already corrected the error; if we get −1, the new state is E|ψ〉 but we know there is an error, so we
proceed as before. Note that errors belonging to N(S) cannot be detected (therefore also not corrected)
in this way.

Definition 1.15. The distance of a stabilizer QECC is the minimal weight of the elements in N(S)\S.
It is sometimes included in the double square bracket notation [[n,k,d]] for the code.

Proposition 1.2. A stabilizer QECC of distance 2t +1 can correct up to t single qubit errors.

Proof. See for example [5].

1.3.1 The five qubit code

The five qubit code is going to be the basic building block of the holographic codes we will be studying
in the second part of this essay, so it is worth introducing it now to become familiar with it. The five
qubit code is a [[5,1,3]] QECC, that is, it encodes one logical qubit in five physical qubits, and has
distance 3. This last part implies that it can correct any single qubit error. The five qubit code has the
smallest number of physical qubits that allow for this property. Indeed, an intuitive argument for this is
the following: the number of possible single qubit errors in a code with n physical qubits is 3n, since
we can have X , Y and Z errors in each of the qubits. If we are encoding one logical qubit, we will have
n−1 generators of the stabilizer, and hence 2n−1−1 possible error syndromes. If we want to be able to
identify which error has occurred unambiguously, so that we are able to correct it, we need this number
to be bigger than the number of possible errors, which happens for the first time for n = 5. The five
qubit code can also correct any two erasure errors (i.e., those for which we know which qubits have
been affected, for example because we lost them).

A set of generators for the stabilizer of the five qubit code is given by6:

S0 = 〈X1XZZ,ZX1XZ,ZZX1X ,XZZX1〉
Since S0 has four independent generators of order two, we have |S0| = 16. In fact, we can give a very
brief description of it. Consider the following two automorphisms of G5:

R5 : G5 −→ G5

M1M2M3M4M5 7−→ M2M3M4M5M1

6We omit the ⊗ symbols between the single qubit Pauli operators to save space.
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Figure 1.3: Above: the composition of the encoding map Φ with an element of the stabilizer results in
the same map Φ. Below: Encoding of a logical X operation as five physical X operations.

T5 : G5 −→ G5

M1M2M3M4M5 7−→ T (M1)T (M2)T (M3)T (M4)T (M5)

where T is the automorphism of G1 given by the following action on the generators:

X −→ Y −→ Z −→ X (1.11)

Note that R5 has order 5 and T5 has order 3. Then if we call S = 〈R5,T5〉 ≤ Aut(G5), we have

S0 = {11111}∪OrbS (X1XZZ)

Noting this is useful because: a) this two automorphisms will also preserve the stabilizer of our holo-
graphic codes, and b) it gives us a way to think quickly about all the elements of the stabilizer, which
will be useful when we start to represent them pictorially. Indeed, we will depict this code as a tensor
with one input leg (which we will many times omit in the drawings) and five output legs corresponding
to the five physical qubits (see figure 1.3). The five-fold rotational symmetry R5 is manifest in the draw-
ing. The five qubit code allows for very easy to remember encoded logical operators. Indeed, if we call
Φ the encoding isometry, it holds:

Φ◦X = XXXXX ◦Φ Φ◦Z = ZZZZZ ◦Φ

Hence a logical Pauli operator can be applied by just applying that same Pauli operator to all of the
physical qubits. Imagine though that we only had access to the first three qubits. Could we still, say,
perform a logical Z on the encoded qubit. It turns out, we could. Clearly, composing an encoded logical
operator with an element of the stabilizer results in another encoded version of the same logical operator.
For example,

(X1XZZ)(ZZZZZ) =−Y ZY11

and we can perform an encoded Z having access to only the first three qubits. In fact, this applies to
any three qubits. It does not, though, if we only have access to two qubits, since we know that encoded
operations belong to N(S)\S and the minimal weight of the operators in this set is the distance, which
is three: we need to act nontrivially on three qubits to be able to manipulate the logical, encoded state.
Good thing is, as we said, those can be any three qubits we want. This property will turn out to be
important soon.
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1.3.2 Quantum secret sharing

Let us finish this chapter with an interesting remark related with what we just saw. As an interesting side
application of quantum error correction, let us review a particular scheme called quantum secret sharing.
Suppose that five parties, Alice, Bob, Charlie, Debbie and Erica, are selected by the government to
custody some particular, very important information. However, the officials involved suspect that some
of them might not be trustworthy, and should not be granted access to the information. To minimize
risks, they agree on a scheme such that each of the five will be given some piece of information, which
is useless by itself when it comes to revealing the original secret, but which allows to recover it when
three or more of the secret holders put their pieces together. If they find a way to do so they will have
designed a (3,5)-threshold scheme.

Definition 1.16. Let k,n be natural numbers, with k ≤ n. A (k,n)-threshold scheme is a scheme for
information sharing among n parties that allows for any k of them to access the secret while any k− 1
of them will be unable to retrieve any information at all.

The five qubit code turns out to provide one such scheme: it suffices to encode the logical bit of
information and give one physical qubit to each of the parties [6, 7]. It can be proved that holding two
of the five qubits does not allow the retrieval of any information, while any three parties coming together
could use the code to correct for the absence of the two missing qubits and recover the state. As we
have seen, they could as well perform encoded logical operations on the secret encoded bit without the
need of the other two physical qubits to do it.





Chapter 2

Holographic Quantum Error Correcting
Codes

In this chapter we turn to what will be our object of study for this essay: holographic quantum error
correcting codes (HQECC). We will start with a brief motivation as to why these codes came to be an
object of consideration. We will then take one of the most simple examples of such a code to develop
a strategy to compute the stabilizer. Finally we will generalize the construction to a whole family of
HQECC of arbitrary size.

2.1 Why HQECC?

The motivation to study these systems comes from a seemingly very unrelated area of theoretical physics
called the AdS/CFT correspondence. Without the aim of being too technical but more illustrative, we
will discuss briefly what this is about in this section, which is unnecessary to understand the rest of this
work.

One of the research lines to which a great amount of effort is devoted in current theoretical physics
is the unification of quantum theory, which describes microscopical phenomena, and general relativity,
which describes gravity and black holes. The AdS/CFT correspondence is a particular duality among
both theories that was discovered in the context of string theory. AdS stands for Anti-de Sitter space-
time1: it arises from solving Einstein’s equations of general relativity with a negative cosmological
constant, which grants it negative curvature. A d-dimensional AdS spacetime possesses a (d − 1)-
dimensional boundary at infinity, which is whay this kind of spacetime is sometimes called a “gravi-
tational box”. On the other hand, CFT stands for Conformal Field Theory, which is a particular kind
of quantum field theory with a large amount of symmetries (those included in the conformal group).
The correspondence happens between an AdS spacetime (the bulk) and a CFT defined on its boundary,
which is why it is usually qualified as holographic, meaning that the CFT is a hologram, a representa-
tion in one less dimension of the bulk. One of the aspects which manifest this correspondence is the
existence of a mapping between operators defined on the Hilbert space associated to the bulk and op-
erators defined on the Hilbert space associated to the boundary. In particular, there exists the so-called
AdS-Rindler reconstruction [8], which is a mapping between a local operator defined on some point x
in the bulk, and an integral over local operators supported2 on a region of the boundary such that x lies
in its causal wedge. (In two dimensions (one-dimensional boundary), the causal wedge of a region R of
the boundary is the region of the bulk enclosed by the geodesic that starts and ends at the extremes of
R, see figure 2.1.)

1Generally by spacetime we understand a d-dimensional Lorentzian manifold, i.e. a smooth manifold endowed with a
metric of Lorentzian signature (one negative eigenvalue and d−1 positive eigenvalues or viceversa).

2We say that an operator is supported on a particular region if its action is trivial outside this region, e.g., it commutes
with the algebra of local operators outside this region. This is the continuous analogue of saying that the operator XY Z11 is
supported on the first three of the five qubits.

15
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Figure 2.1: We take a time slice of AdS3 to end up with a 2-dimensional bulk (Poincaré disc) and a
1-dimensional boundary. Point x in the bulk lies on the causal wedge of boundary regions AC and BD,
so we should be able to reconstruct local operators on x over both of them.

The main problem addressed in [9] is that we can find many regions of the boundary such that a
particular x lies in their causal wedge. The mapping will then give rise to boundary operators supported
in these different regions, and hence in principle different, even though they are associated to the same
operator on the bulk, and therefore in some sense, they should be equivalent. The proposal of [9] is that
all this should be interpreted in a quantum error correction context. The operator of the bulk should be
seen as a logical operator acting on a logical degree of freedom, and the different operators it is mapped
to in the boundary should be interpreted as different encodings of the same logical operator, which may
be supported on different regions, just as it happened in the five qubit code that we presented at the
end of the previous chapter. All these operators would hence act equivalently on the code subspace,
which would correspond in this interpretation to the low energy subspace of the CFT. In this context,
holographic quantum error correcting codes were introduced as a toy model to try to understand better
this proposed connection between the AdS/CFT correspondence and quantum error correction [1]. In
particular, they were proposed in the context of the AdS3/CFT2 duality, meaning that we consider AdS
spacetime in 3 dimensions (two spatial ones plus time), and hence its boundary, where the CFT is
defined, will be two-dimensional (one spatial dimension plus time). Additionally we consider a time
slice, namely we fix the value of the time coordinate, so that the resulting bulk is two-dimensional and
endowed with hyperbolic geometry (a Poincaré disc), and its boundary is one-dimensional. To further
simplify the setting we proceed to discretize bulk and boundary by choosing a hyperbolic tiling.

2.2 Hyperbolic tilings

Our quantum error correcting code will be given by a tensor network that we will place in the Poincaré
disc. This we will do by choosing a particular regular hyperbolic tiling of the plane. A regular
hyperbolic tiling is given by a covering of the hyperbolic plane by regular polygons which do not
overlap or leave gaps. A possible way to describe these tilings or tessellations is by means of their
Schläffi symbol. A two dimensional tessellation of Schläffi symbol {p,q} consists of a covering with
regular p-gons such that q of them meet at each vertex. Examples are given in figure ??.

Lemma 2.1. A two-dimensional regular tiling of Schläffi symbol {p,q} is hyperbolic if and only if

q >
2p

p−2
, and Euclidean if and only if q =

2p
p−2

.

Proof. If q equal polygons are to meet at each vertex, their inner angles must be of 2π

q . A regular p-gon

in the Euclidean plane has inner angles of (p−2)π
p . If this amount exceeds 2π

q , we will need p-gons whose
angles are smaller than in the Euclidean case, hence the underlying geometry will be hyperbolic. If both
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{4, 4} {4, 5}

{3, 7}

{3, 7}

Figure 2.2: Some regular two dimensional tilings with their corresponding Schläffi symbols. Note that
the first one is Euclidean, while the other two are hyperbolic.

quantities are equal, then we are in the Euclidean case, and we need no intrinsic curvature to construct
the tessellation.

2.3 A first HQECC

The tiling that we will choose for this work has Schläffi symbol {4,5} and it is depicted in the central
part of figure 2.2. We will build a tensor network by placing a five-qubit code tensor in each of the
vertices3 of this tiling. One of the legs of the tensor will be thought of as pointing “upwards” (input
leg), while the other five will be contracted with other tensors in the network. Of course we cannot
work with the whole, infinite tessellation, so we will have to truncate it at some point. This will leave
uncontracted legs in the boundary that will represent the output of the encoding map Φ, the physical
qubits. We will also call them boundary legs/qubits, while the logical, input legs will be called bulk
legs/qubits. This toy model was proposed in [1].

Definition 2.1. We will call any tensor such that n of its legs are boundary qubits an n-cluster.

In the codes we will work with there will only be 2- and 3-clusters.
Our first example of holographic code is shown in figure 2.3, and corresponds to the truncating the

network after a first layer of faces (squares) around the central tensor, which we denote v0. The bulk
legs are shown in red and the boundary ones in blue. We insist: the tensor network we are drawing
is nothing but a representation of the encoding isometry Φ : HL −→ HP, decomposed in terms of
“smaller” multilinear maps. We count 11 logical qubits and 25 physical qubits, that is HL ∼=H11,HP ∼=
H25 and our code is a [[25,11]] QECC, and it being a stabilizer code4 it will have 25-11=14 generators
of its stabilizer S, which we want to determine.

The tactic that we will follow to determine the stabilizer is inspired in [9] and [2]. Remember from
figure 1.3 that we can include elements of the stabilizer around pentagon code tensors without changing
the tensor. If we choose cleverly which elements of the stabilizer we apply around each tensor, we can
get them to cancel each other in the bulk (due to X ,Y,Z squaring to the identity). This is depicted in
figure 2.4. Once we have removed all of the unitaries in the bulk, we are left with an element of the
Pauli group acting on the boundary qubits. But everything we did was composing the five qubit code
isometries with elements of their stabilizer, what leaves them unchanged. Thus the action of just the
Pauli operators remaining on the boundary qubits does not affect the encoding isometry of the HQECC:

3From now on we might be a little bit sloppy and identify terms like “vertex” and “tensor” or “network” and “code”
whenever the subtleties of the difference between both terms are not important.

4The fact that we can expect the holographic code to be a stabilizer code is nontrivial, and is proved in [1].
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11 logical qubits

25 physical qubits

Figure 2.3: The first HQECC we will work with

X

X

Z

Z

I

Z

Z

X

X

I

Figure 2.4: We choose to act with the appropiate five qubit code stabilizer elements so that all Pauli
operators except those acting on boundary qubits cancel each other.
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Y Y

Y Y

X X

X X

Z Z

Z Z

Figure 2.5: The only four possibilities, up to rotation, that we have for each vertex when choosing a
stabilizer construction.

it is hence a member of the stabilizer. Because of the structure of the five qubit code stabilizer, there
are, up to rotation, four possibilities for each vertex in the network, as may be seen in figure 2.5 were
we denote the corresponding operators X ,Y,Z by colouring the edges. Hence, we define

Definition 2.2. A stabilizer construction is a map φ : V 7−→ S0, where V is the set of vertices (tensors)
of the holographic code tensor network, such that the Pauli operators associated to the same edge of the
network are the same (see figure 2.4). We call the set of all stabilizer constructions Σ.

Proposition 2.1. The element sφ of G25 built from taking the Pauli operators associated to boundary
qubits from a stabilizer construction φ ∈ Σ belongs to the stabilizer of the holographic code S. We call
the set of these elements Sc.

Proof. It follows from the reasoning above.

Proposition 2.2. Σ and Sc can both be endowed with a group structure that turns

ζ :Σ−→ Sc

φ 7−→ sφ

into an isomorphism.

Proof. Let φ1,φ2 ∈ Σ, and define (φ1 ·φ2)(v) = φ1(v) ·φ2(v).This is clearly another stabilizer construc-
tion. (Note that the map

Σ−→ (S0)
×11

s 7−→ (s(v0),s(v1), . . . ,s(v10)

where the vi are the different vertices of the code, is a monomorphism, so that Σ is isomorphic to its
image, a subgroup of (S0)

×11). We can get a group structure on Sc by demanding the mapping ζ to
be an isomorphism. Note it is surjective by construction. It is also injective since the Pauli operators
applied on the boundary qubits of the 2-clusters already determine the whole stabilizer construction.
Indeed, given two single qubit Pauli operators (X ,Y,Z) acting on two output qubits of the same tensor
there is one and only one element of S0 whose restriction to those two qubits is precisely those two Pauli
operators (this is not difficult to check from, for example, figure 2.5). Hence sφ determines φ(v) for all
v boundary tensor (since they are n-clusters with n≥ 2), and this completely constraints φ(v0).

Remark 2.1. Note that the group operation we just defined on Sc is the same as the one inherited from
S, namely the composition of linear operators or matrix product.

Figure 2.6 represents one such construction. Now, we would like to obtain a set of 14 independent
generators, that will represent the stabilizer slightly more compactly than the enumeration of its 214

elements. A possible strategy to find independent generators is starting by the elements of S which have
minimal weight.
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X

Y

Z

Figure 2.6: Starting from the tensor in the upper left corner, this stabilizer construction builds the
stabilizer element 111ZY1Y X1XZX1Y1Y Z1YY X1XZX .

Proposition 2.3. The minimal weight of a nontrivial boundary Pauli operator sφ ∈ Sc built from a
stabilizer construction φ ∈ Σ is 8.

Proof. To abbreviate along this proof, we will call tensors v such that φ(v) 6= 11111 loaded tensors.
Note the following consequences of the geometry of the network and the nontrivial S0 elements having
weight 4:

• Any loaded n-cluster provides at least n−1 boundary qubits acted upon nontrivially by sφ .

• Any loaded boundary tensor is next to at least another loaded boundary tensor.

Assume first that the central tensor is loaded. Then at least four out of the five 2-clusters of the boundary
are loaded. Hence, at least four boundary qubits, one per 2-cluster, are acted upon nontrivially by sφ .
Also, at least two 3-clusters next to the 2-clusters are loaded, and they provide another four boundary
qubits acted upon nontrivially by sφ , whose weight is hence at least 8. Now, if the central tensor is
not loaded, every 3-cluster next to a loaded 2-cluster is loaded, hence two loaded 2-clusters already
imply that the weight of sφ is bigger than 8. Alternatively we can have only one loaded 2-cluster and
its two adjacent 3-clusters, and no other loaded boundary tensors, but this requires sφ to have weight
exactly eight, since the two 3-clusters will have all of their boundary qubits acted on by nontrivial Pauli
operators, the identity must act on the leg that connects them to their adjacent unloaded 2-clusters (we
will soon give examples of this). If no 2-clusters are loaded, sφ is trivial (remember the injectivity of ζ )
and we are done.

The previous proof is constructive in the sense that it provides us with a guideline on how to get
minimal weight elements of S. These are interesting because it is easy to see that those will be inde-
pendent generators, each being localized on their side of the boundary pentagon. We can also apply
qubitwise the automorphism T that we defined at the end of the first chapter. Note that this is equivalent
to choosing T ◦ φ as our stabilizer construction. We get this way a set of ten independent generators,
the ones in figure 2.7 and their rotated partners. Note that we cannot apply T once again to get more
generators since they would turn out not to be independent:

XZZZZZZX T−→ Y XXXXXXY T−→ ZYYYYYY Z = XZZZZZZX ·Y XXXXXXY (2.1)

If we manage to find four more independent generators, we will be done since we know there cannot
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X X
ZZZZZZ

Y Y
XXXXXX

Figure 2.7: Stabilizer generators of minimal weight.

be any more. To do so, we notice that all of the previous generators come from stabilizer constructions
where φ(v0) = 11111. But we have many more possibilities for φ(v0), some of which might lead to
independent elements of the stabilizer. Indeed, we notice the existence of the following homomorphism:

Lemma 2.2. Let s ∈ Sc. Then the map

π : Sc −→ S0

s 7−→ ζ
−1(s)(v0)

is a homomorphism.

Proof. It is the composition of ζ−1, which is an isomorphism, and

ζ0 :Sc 7−→ S0

φ 7−→ φ(v0)

which is an homomorphism by the definition of the group structure on the set of stabilizer constructions.

If we now find elements s1,s2,s3,s4 ∈ Sc such that they are mapped to the generators of S0:

π(s1) = X1XZZ π(s2) = ZX1XZ π(s3) = ZZX1X π(s4) = XZZX1

it is clear that they will be independent of each other. Indeed, if there existed a way to express one in
terms of the others, the homomorphism π would map it into the corresponding relationship between the
generators of S0, which we know to be independent. The same reasoning applies to prove that these four
elements are independent of the other ten we had found, since these all belong to π−1(11111), thus we
can prove the following

Theorem 2.1. Sc = S

Proof. Figure 2.8 shows the construction φ associated to a possible s1 = ζ (φ), which then can be rotated
three times to provide the rest of generators. Together with the other ten generators found before, this
gives us a set of 14 different generators of Sc ≤ S, which is the same number that S has, hence they are
equal.
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X

Y

Z

Figure 2.8: A generator which does not map to 11111 under π . By rotating the figure one, two and
three fifths of a circumference we obtain constructions for other independent generators.

2.4 The network grows

We wonder now whether we are able to find the stabilizer for codes built from larger portions of the
hyperbolic tiling. In principle we can truncate the network arbitrarily, but we expect that keeping some
symmetry and regularity will help us in the long run. Therefore we will focus here on computing the
stabilizer for what we will call face based codes, which are depicted in figure 2.9. To define them
properly we need some extra notation:

Definition 2.3. We call the central tensor of the {4,5}-hyperbolic tiling its zeroth boundary, B0 = {v0}.
Recursively, we define the n-th boundary of the code Bn as the set of tensors of the network which belong
to the same face that at least one tensor of Bn−1 and are not included in Bi for i < n.

Remark 2.2. Note that the progressively increasing boundaries provide a partition of the set of vertices
of the network.

Remark 2.3. This way of defining boundaries does not proceed by graph distance from the center.
Instead, the n-th boundary contains tensors placed at graph distances ranging from n to 2n. If we draw
the diagonals of every face and count them as edges of the graph, then the n-th boundary could actually
be defined as the set of tensors at graph distance n from the center.

Definition 2.4. The n-th face based code or FBC is the holographic QEC obtained from a truncation of
the {4,5}-hyperbolic tiling along its n-th boundary. We call its set of vertices Vn and its stabilizer Sn.
Note that Vn = ∪n

i=0Bi.

It is easy to compute how many 3-clusters and 2-clusters the n-th FBC has:

Proposition 2.4. Let an,bn be the number of 2-clusters and 3-clusters of the n-th FBC. Then we have
the following recurrence relations:

a1 = 5 an = 2an−1 +3bn−1 (2.2)

b1 = 5 bn = an−1 +2bn−1 (2.3)

Proof. The values for n = 1 can be checked by inspection. Two adjacent physical qubits in the same
cluster will become edges of a face , and the tensor opposite to the one giving the cluster will give
rise to a new 3-cluster. Hence a 2-cluster gives rise to a 3-cluster, and a 3-cluster to two 3-clusters.
This provides the second recurrence relation. As for the first one, notice that every physical qubit of
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Figure 2.9: The first three FBCs, with the boundaries B1,B2,B3 colored. Note that the initial example
we analyzed is precisely the first of them.

the (n− 1)-th layer will be contracted with a tensor shared by two added faces, hence this tensor will
provide a 2-cluster for the next layer.

Corollary 2.1.

an =
5
2

((√
3+1

)(√
3+2

)n−1
−
(

2−
√

3
)n−1(√

3−1
))

(2.4)

bn =
5
6

((√
3+2

)n−1(√
3+3

)
−
(

2−
√

3
)n−1(√

3−3
))

(2.5)

Proof. It amounts to solving the linear recurrences of the proposition.

From this expressions we can get the number of physical and logical qubits of each FBC easily.
However, for what follows we will only need the following

Corollary 2.2. Let gn be the number of generators of Sn. Then gn+1 = gn +2bn+1 ∀n ∈ N∪{0}.

Proof. Call pn and ln the number of physical and logical qubits respectively. From the proof of the
proposition it follows that pn = an+1 and it is also clear that ln+1− ln = an+1 + bn+1. Putting it all
together,

gn+1−gn = (pn+1− ln+1)− (pn− ln) = (pn+1− pn)− (ln+1− ln) = an+2−an+1−an+1−bn+1 = 2bn+1
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2.5 The stabilizer of a general FBC

It is now time to apply what we learned in the case n = 1 to a general FBC. The generalization of the
definition of a stabilizer construction is straightforward. It is our hope that again these constructions
will provide us with all the generators (and thus all the elements) of the stabilizer Sn of the n-th FBC.

Remember that last time we started using stabilizer constructions whose only loaded tensors lay
in a very localized region of the boundary. It turns out, these kind of stabilizer generators exist for all
FBCs! Indeed, we can repeat the construction of figure 2.7 from any segment of Bn located between two
3-clusters, and it is easy to see that we can make the only loaded tensors be the ones in that segment.
Thus, this provides us with 2bn independent generators for Sn.

Now comes a key realization: according to Corollary 2.2 the number of generators we are missing
is gn− 2bn = gn−1, that is the number of generators of Sn−1, the stabilizer of the previous FBC. This
is totally analogous to the situation for n = 1, when we were missing four generators, as many as S0
has. Thus we just we just need to go through the slightly tedious generalization of the machinery we
developed above to reach a quick conclusion:

Definition 2.5. A stabilizer construction for the n-th FBC is a map φ : Vn 7−→ S0 such that the Pauli
operators associated to the same edge of the graph by this map are the same. We call this set of stabilizer
constructions Σn. It has a group structure analogous to that of Σ1. Every φ ∈ Σn defines an element sφ

of a subset Sc,n of Sn by selecting only the Pauli operators acting on the boundary qubits.

Proposition 2.5. Let n,m ∈ N∪{0}, n > m.

1. Let φ ∈ Σn. Then φ
∣∣
Vm
∈ Σm and φ 7−→ φ

∣∣
Vm

is an epimorphism.

2. The map

ζn :Σn −→ Sc,n

φ 7−→ sφ

is a bijection that, by demanding it to be an isomorphism, induces a group structure on Sc,n whose
product coincides with the one inherited from Sn.

3. The map

πn,m :Sc,n −→ Sc,m

s 7−→ ζm

(
ζ
−1
n (s)

∣∣
Vm

)
is an epimorphism.

Proof. Only the surjectivity in (1) and the injectivity in (2) might be nontrivial. For the first one, it is
enough to prove it in the case m = n− 1. Notice that every tensor v ∈ Bn is connected to at most one
tensor in Bn−1, hence only one of the Pauli operators of φ(v) is determined by φ

∣∣
Vm

. Now choose v to be
a 2-cluster adjacent to a 3-cluster and choose an arbitrary Pauli operator for the leg of this 2-cluster that
is not a boundary qubit nor connects it to Bm or the 3-cluster. That way we fix φ(v). Now we proceed
to the next boundary tensor v′ in opposite direction to the 3-cluster: at most two of the Pauli operators
of φ(v′) are determined. Hence, if needed we make an arbitrary choice and move on. Eventually we
will reach the 3-cluster next to where we started, and by doing so at most two of its Pauli operators
will have been determined. This way we can build a valid φ such that its restriction to Vm is a given
element of Σm. For the injectivity of (2), notice that every tensor in Bn is an r-cluster with r ≥ 2, thus sφ

determines φ
∣∣
Bn

by the properties of S0 we used previously. But now, every tensor of Bn−1 is connected
to at least two tensors of Bn by construction of the boundaries, thus the same argument applies and φ

∣∣
Bn

is determined by sφ . Now we iterate the process until we reach B1, when proposition 2.2 applies and we
are done.
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Theorem 2.2. For every n≥ 1, Sc,n = Sn.

Proof. We argue by induction. For n = 1 it is theorem 2.1. Assume it is true for n ≤ n− 1. It is
easily checked that the localized elements analogous to the ones from figure 2.7 provide us with 2bn

independent generators of Sc,n: the corresponding stabilizer construction assigns 11111 to every tensor
in the network but the boundary tensors between two consecutive 3-clusters. Now the map πn,n−1 is an
epimorphism, hence there exist elements in Sc,n which are mapped to the gn−1 generators of Sn−1. These
elements are therefore independent of each other and of the localized ones, which belong to the kernel of
πn,n−1. Thus we have enough generators, we know that Sc,n = Sn and we know how to build them.

2.6 Conclusions and outlook

Finally we know how to build the stabilizer for FBCs. It turns out that a large proportion of the gen-
erators of Sn are actually very localized in the boundary. Then we have some which have a slightly
bigger support: the (not unique) preimages by πn,n−1 of the generators of Sn−1 that are localized inside
Bn−1. Then we get the preimages by πn,n−2 of the localized elements of Sn−2, and so on. To obtain these
preimages we just need to “push” the stabilizer elements towards the boundary, as in the first part of the
proof of proposition 2.5. Thus we end up with generators from

ker πn,n−1,ker πn,n−2\ker πn,n−1, . . .

until we get to the preimages by πn,0 of the four generators of the stabilizer of S0, which will probably
be very delocalized in the boundary. It would be interesting to study how much so, since the size of
the support of the generators of the stabilizer may actually have physical consequences, not only for the
practical reason that these operators need to be measured if we are to use the HQECC as a QECC, but
also as a hint at the entanglement (quantum correlations) properties of the CFT states that the HQECC
is modelling.

There are many other questions that can be explored when it comes to HQECC, both from a mathe-
matical and a physical perspective. Following with the ideas of localization in the boundary, it would be
interesting to characterize the fault-tolerant gates of these codes, maybe establishing as a fault-tolerance
criterion the requirement that the support of the encoded logical operators does not grow too much dur-
ing a computation. Another research line involves generalizing our results to other truncation schemes
of the holographic codes, and studying the possible relationship, if there is any, between the algebraic
properties of the stabilizer and the geometrical properties of the network. Also, we could try to obtain
insights from our results with the HQECC to help us in the generalization of these ideas to a continuous
setting as the one provided by AdS/CFT.
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